List of publications Jun.-Prof. Dr. Christian Dreßler

Anzahl der Treffer: 21
Erstellt: Sun, 28 Apr 2024 20:32:47 +0200 in 0.0924 sec


Peschel, Christopher; Dreßler, Christian; Sebastiani, Daniel
ab-initio study of hydrogen bond networks in 1,2,3-triazole pases. - In: Molecules, ISSN 1420-3049, Bd. 25 (2020), 23, 5722, insges. 15 S.

The research in storage and conversion of energy is an everlasting process. The use of fuel cells is very tempting but up to now there are still several conceptual challenges to overcome. Especially, the requirement of liquid water causes difficulties due to the temperature limit. Therefore, imidazoles and triazoles are increasingly investigated in a manifold of experimental and theoretical publications as they are both very promising in overcoming this problem. Recently, triazoles were found to be superior to imidazoles in proton conduction. An ab-initio molecular dynamics simulation of pure triazole phases for investigating the behavior of both tautomer species of the triazole molecule has never been done. In this work, we investigate the structural and dynamical properties of two different solid phases and the liquid phase at two different temperatures. We are able to show how the distinct tautomers contribute to the mechanism of proton conduction, to compute dynamical properties of the four systems and to suggest a mechanism of reorientation in solid phase.



https://doi.org/10.3390/molecules25235722
Dreßler, Christian;
Development of scale-bridging approaches for the simulation of proton conduction and intermolecular interactions : [kumulative Dissertation]. - Halle, 2020. - 1 Online-Ressource (231 Seiten)
Martin-Luther-Universität Halle-Wittenberg, Dissertation 2020

Gegenstand dieser Arbeit ist die Entwicklung einer skalenübergreifenden Methode zur Beschreibung von Protonenleitung und eines effizienten Ansatzes zur Berechnung von intermolekularen elektrostatischen Wechselwirkungen. Im Rahmen dieser Arbeit wurden ab initio Molekulardynamik-Simulationen von Verbindungen des Typs CsHyXO4 (X= S, P, Se, y = 1, 2) durchgeführt. Die resultierenden Trajektorien wurden dazu genutzt, die Molecular Dynamics/Matrix Propagation (MDM) Methode zu entwickeln, welche die Protonendynamik einer kompletten Molekulardynamik-Simulation in einer M x M Matrix kondensiert, wobei M die Anzahl der Sauerstoffatome beschreibt. Der MDM Ansatz wurde dazu benutzt, die Protonendynamik in einem CsH2PO4 System auf einer Längenskala von einigen Mikrometern und in einem nanoporösen Netzwerk in Übereinstimmung mit experimentellen Daten zu simulieren. Der zweite Teil dieser Arbeit widmet sich der Untersuchung einer niedrig dimensionalen Darstellung der linear density-density response function (LDDRF). Mithilfe der effizienten Darstellung der LDDRF können Polarisationseffekte in klassischen Molekulardynamik-Simulation berücksichtigt werden.



http://nbn-resolving.de/urn:nbn:de:gbv:3:4-1981185920-361589
Dreßler, Christian; Sebastiani, Daniel
Reduced eigensystem representation of the linear density-density response function. - In: International journal of quantum chemistry, ISSN 1097-461X, Bd. 120 (2020), 3, e26085, S. 1-11

The linear density-density response function represents a formulation of the generalized density response of a molecular (or extended) system to arbitrary perturbing potentials. We have recently established an approach for reducing the dimension of the (in principle infinite) eigenspace representation (the moment expansion) and generalized it to arbitrary self-adjoint, positive-definite, and compact linear operators. Here, we present a modified representation - the reduced eigensystem representation - which allows to define a trivial criterion for the convergence of the approximation to the density response. By means of this novel eigensystem-like structure, the remarkable reduction of the dimensionality becomes apparent for the calculation of the density-density response function.



https://doi.org/10.1002/qua.26085
Wagner, Maximilian; Dreßler, Christian; Lohmann-Richters, Felix Paul; Hanus, Kevin; Sebastiani, Daniel; Varga, Aron; Abel, Bernd
Mechanism of ion conductivity through polymer-stabilized CsH2PO4 nanoparticular layers from experiment and theory. - In: Journal of materials chemistry, ISSN 2050-7496, Bd. 7 (2019), 48, S. 27367-27376

Electrodes are currently the primary performance-limiting component in low and intermediate temperature fuel cells. A proven method for improving electrode performance in solid acid fuel cells is to create ever finer nanostructures and thus increase the electrochemically-active surface area. However, this performance enhancement is limited by issues of long-term stability, as well as increasing both the electronic and ionic conduction pathways. Here, we combine a systematic experimental study with a computational model to quantify the effect of (1) the stabilizing polymer polyvinylpyrrolidone as well as (2) the porosity and electrode layer thickness on the average ionic conductivity of the solid acid electrolyte CsH2PO4 in a composite solid acid fuel cell electrode. With a multiscale simulation approach using a combined molecular dynamics and lattice Monte Carlo method, proton conduction through a porous electrode is simulated at mesoscopic timescales while retaining near-atomistic structured evolution. Electrochemical impedance spectroscopy is used to evaluate the porous electrodes obtained via spray drying. Both approaches reveal a similar and significant contribution of the porous electrolyte layer to the overall cell resistance. This indicates that geometrical parameters, as well as stabilizing materials may play an essential role when designing a high-performance solid acid fuel cell.



https://doi.org/10.1039/c9ta04275j
Dreßler, Christian; Scherrer, Arne; Ahlert, Paul; Sebastiani, Daniel
Efficient representation of the linear density-density response function. - In: Journal of computational chemistry, ISSN 1096-987X, Bd. 40 (2019), 31, S. 2712-2721

We present a thorough derivation of the mathematical foundations of the representation of the molecular linear electronic density-density response function in terms of a computationally highly efficient moment expansion. Our new representation avoids the necessities of computing and storing numerous eigenfunctions of the response kernel by means of a considerable dimensionality reduction about from 103 to 101. As the scheme is applicable to any compact, self-adjoint, and positive definite linear operator, we present a general formulation, which can be transferred to other applications with little effort. We also present an explicit application, which illustrates the actual procedure for applying the moment expansion of the linear density-density response function to a water molecule that is subject to a varying external perturbation potential.



https://doi.org/10.1002/jcc.26046
Ahlert, Paul; Scherrer, Arne; Dreßler, Christian; Sebastiani, Daniel
Iterative approach for the moment representation of the density-density response function. - In: The European physical journal, ISSN 1434-6036, Bd. 91 (2018), 6, 94, S. 1-5

https://doi.org/10.1140/epjb/e2018-90040-x
Kabbe, Gabriel; Dreßler, Christian; Sebastiani, Daniel
Proton mobility in aqueous systems: combining ab initio accuracy with millisecond timescales. - In: Physical chemistry, chemical physics, ISSN 1463-9084, Bd. 19 (2017), 42, S. 28604-28609

https://dx.doi.org/10.1039/C7CP05632J
Dreßler, Christian; Kabbe, Gabriel; Sebastiani, Daniel
Insight from atomistic simulations of protonation dynamics at the nanoscale. - In: Fuel cells, ISSN 1615-6854, Bd. 16 (2016), 6, S. 682-694

https://doi.org/10.1002/fuce.201500217
Kabbe, Gabriel; Dreßler, Christian; Sebastiani, Daniel
Toward realistic transfer rates within the coupled molecular dynamics/lattice Monte Carlo approach. - In: The journal of physical chemistry, ISSN 1932-7455, Bd. 120 (2016), 36, S. 19905-19912

https://doi.org/10.1021/acs.jpcc.6b05821
Dreßler, Christian; Kabbe, Gabriel; Sebastiani, Daniel
Proton conductivity in hydrogen phosphate/sulfates from a coupled molecular dynamics/lattice Monte Carlo (cMD/LMC) approach. - In: The journal of physical chemistry, ISSN 1932-7455, Bd. 120 (2016), 36, S. 19913-19922

https://doi.org/10.1021/acs.jpcc.6b05822