Anzahl der Treffer: 574
Erstellt: Fri, 29 Sep 2023 23:10:44 +0200 in 0.1247 sec

Schneckenburger, Max; Almeida, Rui; Höfler, Sven; Braga, Ines; Börret, Rainer
Monitoring and meaning of vibrations in robot polishing. - In: Journal of the European Optical Society, ISSN 1990-2573, Bd. 19 (2023), 1, 11, S. 1-14
Brokmann, Ulrike; Weigel, Christoph; Altendorf, Luisa-Marie; Strehle, Steffen; Rädlein, Edda
Wet chemical and plasma etching of photosensitive glass. - In: Solids, ISSN 2673-6497, Bd. 4 (2023), 3, S. 213-234

Photosensitive glasses for radiation-induced 3D microstructuring, due to their optical transparency and thermal, mechanical, and chemical resistance, enable the use of new strategies for numerous microscale applications, ranging from optics to biomedical systems. In this context, we investigated the plasma etching of photosensitive glasses after their exposure and compared it to the established wet chemical etching method, which offers new degrees of freedom in microstructuring control and microsystem fabrication. A CF4/H2 etching gas mixture with a constant volumetric flow of 30 sccm and a variable H2 concentration from 0% to 40% was utilized for plasma-based etching, while for wet chemical etching, diluted hydrofluoric acid (1% ≤ cHF ≤ 20%) was used. Therefore, both etching processes are based on a chemical etching attack involving fluorine ions. A key result is the observed reversion of the etch selectivity between the initial glassy and partially crystallized parts that evolve after UV exposure and thermal treatment. The crystallized parts were found to be 27 times more soluble than the unexposed glass parts during wet chemical etching. During the plasma etching process, the glassy components dissolve approximately 2.5 times faster than the partially crystalline components. Unlike wet chemical etching, the surfaces of plasma etched photostructured samples showed cone- and truncated-cone-shaped topographies, which supposedly resulted from self-masking effects during plasma etching, as well as a distinct physical contribution from the plasma etching process. The influences of various water species on the etching behaviors of the homogeneous glass and partially crystallized material are discussed based on FTIR-ATR and in relation to the respective etch rates and SNMS measurements.
Herrmann, Andreas; Assadi, Achraf Amir; Lachheb, Raoula; Zekri, Mohamed; Erlebach, Andreas; Damak, Kamel; Maâlej, Ramzi; Sierka, Marek; Rüssel, Christian
The effect of glass structure and local rare earth site symmetry on the optical properties of rare earth doped alkaline earth aluminosilicate glasses. - In: Acta materialia, ISSN 1873-2453, Bd. 249 (2023), 118811

Understanding the connection of molecular structure and optical properties of rare earth doped luminescent materials is essential for fabrication of state-of-the-art active laser media. On the other hand, rare earth ions can be used as a probe ion for the molecular structure of the host material if the structure-property correlations are known. Therefore, this work combines molecular dynamics simulations, Judd-Ofelt theory and UV-vis-NIR absorption spectroscopy including the behavior of the structure-sensitive hypersensitive absorption transitions of Er3+ to expand the knowledge on the local molecular structure in the immediate vicinity of the doped rare earth ions in dependence of glass composition. For this purpose, glasses of the compositions (35-x) BaO &hahog; x MgO &hahog; 10 Al2O3 &hahog; 55 SiO2 (mol%) (x = 0, 7.5, 15, 25, 35) and (20-x) BaO &hahog; x MgO &hahog; 20 Al2O3 &hahog; 60 SiO2 (mol%) (x = 0, 10, 20), doped with 2 × 10^20 ions/cm^3 Er3+ were prepared and analyzed. Clear differences in the absorption spectra between glasses of different BaO/MgO ratios, i.e. different network modifier field strengths, and different network modifier oxide to Al2O3 ratios are found and discussed in detail. Glasses with high BaO concentrations and high network modifier oxide to Al2O3 ratios provide lower rare earth coordination numbers with oxygen in general but higher coordination probabilities with non-bridging oxygen, which results in notably increased splitting of the optical transitions of the doped rare earth ions and higher hypersensitivity / lower local site symmetry for the doped rare earth ions in the investigated compositions. Based on our results and results from other publications the local rare earth site symmetry in glasses can in general be correlated with the rare earth coordination number.
Kazak, Oleg; Halbedel, Bernd
Correlation of the vector gradient of a magnetic field with the kinetic energy of hard magnetic milling beads in electromechanical mills. - In: Chemie - Ingenieur - Technik, ISSN 1522-2640, Bd. 95 (2023), 10, S. 1615-1622

This paper describes the experimental investigation and numerical simulation of a novel electromechanical milling principle: the direct transformation of energy into the movement of milling beads with special magnetic properties. The experimental results show that this principle is ideally suited for the finest grinding of organic agents. Anthraquinone particles with a median size of 25.5 µm were electromechanically ground to 1 µm and the magnetic field strength in the process chamber has the greatest influence on milling results. The developed model reveals that the distribution of the time- and location-dependent vector gradient of the magnetic field in the process chamber determines the energy transfer from the exciter systems to the milling beads and hence the grinding results. With a suitable characterization of the vector gradient distribution, it is possible to establish a correlation between the vector gradient and specific milling beads power. This correlation is fundamental for the design of electromechanical milling machines.
Herrmann, Andreas; Zekri, Mohamed; Maâlej, Ramzi; Rüssel, Christian
The effect of glass structure on the luminescence spectra of Sm3+-doped aluminosilicate glasses. - In: Materials, ISSN 1996-1944, Bd. 16 (2023), 2, 564, S. 1-12

Peralkaline Sm3+-doped aluminosilicate glasses with different network modifier ions (Mg2+, Ca2+, Sr2+, Ba2+, Zn2+) were investigated to clarify the effect of glass composition and glass structure on the optical properties of the doped Sm3+ ions. For this purpose, the Sm3+ luminescence emission spectra were correlated with the molecular structure of the glasses derived by molecular dynamics (MD) simulations. The different network modifier ions have a clear and systematic effect on the peak area ratio of the Sm3+ emission peaks which correlates with the average rare earth site symmetry in the glasses. The highest site symmetry is found for the calcium aluminosilicate glass. Glasses with network modifier ions of lower and higher ionic radii show a notably lower average site symmetry. The symmetry could be correlated to the rare earth coordination number with oxygen atoms derived by MD simulations. A coordination number of 6 seems to offer the highest average site symmetry. Higher rare earth coordination probabilities with non-bridging oxygen result in an increased splitting of the emission peaks and a notable broadening of the peaks. The zinc containing glass seems to play a special role. The Zn2+ ions notably modify the glass structure and especially the rare earth coordination in comparison to the other network modifier ions in the other investigated glasses. The knowledge on how glass structure affects the optical properties of doped rare earth ions can be used to tailor the rare earth absorption and emission spectra for specific applications.
Charfi, Bilel; Zekri, Mohamed; Herrmann, Andreas; Damak, Kamel; Maâlej, Ramzi
Atomic scale network structure of a barium aluminosilicate glass doped with different concentrations of rare-earth ions explored by molecular dynamics simulations. - In: Computational materials science, Bd. 218 (2023), 111965

Molecular dynamics (MD) simulation is employed for exploring the coordination of atoms in peralkaline BaO-Al2O3-SiO2 glasses of variable Gd3+ doping concentrations between 1 and 3.8 mol% Gd2O3. For this the MD simulation procedure of inherent structure sampling was used which provides statistically robust information on the local atomic surrounding of the doped rare earth ions. Distributions of Si/Al/Ba/Gd cations in the first, second and third coordination spheres are investigated. Special focus is laid on the effect of Gd3+ doping concentration on the local surrounding of the Gd3+ ions, i. e. rare earth clustering, and general glass structure. The simulations show that SiOAl bonds are preferred in comparison to SiOSi and AlOAl connections with respect to the random model predictions. Deviations from a statistical Si/Al distribution around the BaOp and GdOq polyhedra are observed. The network modifier ions are preferably surrounded by other network modifier ions, rather than by network formers. It is shown that the incorporation of Gd does not affect radial distribution functions, cumulative radial distribution function curves and the coordination sphere of Gd for Gd2O3 doping concentrations of up to 3.8 mol%, i.e. no rare earth clustering is observed. However, increasing Gd2O3 concentrations decrease the number of bridging oxygen and increase the number of non-bridging oxygen (NBO) species in the glass structure. Charge compensation of the additional non-bridging oxygen species is achieved by increasing NBO coordination numbers with Ba2+.
Milanova, Margarita; Aleksandrov, Lyubomir; Yordanova, Aneliya; Iordanova, R.; Tagiara, Nagia S.; Herrmann, Andreas; Gao, G.; Wondraczek, Lothar; Kamitsos, Efstratios I.
Structural and luminescence behavior of Eu3+ ions in ZnO-B2O3-WO3 glasses. - In: Journal of non-crystalline solids, ISSN 0022-3093, Bd. 600 (2023), 122006

Structure and luminescence properties of glasses with compositions 50ZnO:40B2O3:10WO3:xEu2O3, 0 ≤ x ≤ 10 mol% were studied using infrared, Raman and photoluminescence spectroscopic techniques. Physical properties like density, molar volume, oxygen molar volume and oxygen packing density of the glasses were also determined. The overall results obtained indicate the efficiency of the 50ZnO:40B2O3:10WO3 glass structure for the luminescence performance of doped Eu3+. The most intense luminescence peak observed at 612 nm and the high integrated emission intensity ratio (R) of the 5D0&flech;7F2/5D0&flech;7F1 transitions at 612 and 590 nm of 5.77 suggest that the glasses are potential materials for red emission. The results are compared to measurements of a glass without WO3 addition (50ZnO:50B2O3:5Eu2O3) and results from other publications of similar glasses.
Höfler, Sven; Schneckenburger, Max; Brohmann, Maximilian; Harrison, David; Stickel, Franz-Josef; Aziz-Lange, Kathrin; Börret, Rainer
Study of the temperature behaviour in the polishing gap for different combinations of polishing pads and slurries. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 509-512

Issa, Esmail;
Novel reactor design and method for atmospheric pressure chemical vapor deposition of micro and nano SiO2-x films in photovoltaic applications. - Ilmenau : Universitätsverlag Ilmenau, 2022. - 241 Seiten. - (Werkstofftechnik aktuell ; Band 26)
Technische Universität Ilmenau, Dissertation 2021

ISBN 978-3-86360-263-5

In dieser Arbeit wurden ein kostengünstiges Verfahren und eine Anlage zur chemischen Gasphasenabscheidung von SiO2-x-Schichten bei Atmosphärendruck (atmospheric pressure chemical vapor deposition, APCVD) im Labormaßstab entwickelt. Dabei kommt die Hydrolyse von SiCl4 bei Raumtemperatur zum Einsatz. Der Anwendungsschwerpunkt für die SiO2-x-Schichten liegt im Bereich Photovoltaik (PV), speziell kristalline Siliziumsolarzellen. Dort ist die Reduzierung der Herstellungskosten von großer Bedeutung. Im Vergleich zu den bekannten Verfahren für die chemische Gasphasenabscheidung senkt der gewählte Ansatz die Kosten für die SiO2-x-Schichtabscheidung deutlich. Hauptziele der Entwicklungsarbeit waren einfaches Reaktordesign, geringe Sicherheitsmaßnahmen und Wartungszeiten, die Vermeidung von Gasphasenreaktionen und Staubbildung, eine für PV-Anwendungen geeignete Schichtqualität sowie die Möglichkeit, die Abscheideraten in einem weiten Bereich zu variieren. Es wurde ein neuartiger APCVD-Reaktor aus Polycarbonat und thermoplastischen Materialien aufgebaut, mit dem die SiO2-x-Schichten heterogen auf der Substratoberfläche unter Eliminierung von Gasphasenreaktionen synthetisiert werden können. Die Abscheiderate wurde in Abhängigkeit von der Konzentration der Rektanden im Trägergas untersucht. Dank der Entwicklung geeigneter Verdampferkonfigurationen für die Raktenden SiCl4 und H2O können deren Konzentrationen in den inerten Trägergasen vor der Durchmischung in einem Injektor genau eingestellt werden. Die Schlüsselfaktoren für die Kontrolle und Steuerung dieser Konzentrationen sind die Temperaturen und die Volumenströme der Reaktandengase in den Verdampern und im Injektor. Das APCVD-Injektordesign wurde mit Hilfe numerischer Strömungsmechanik optimiert. Für die Simulationen wurde die Software ANSYS verwendet. Als Ergebnis der Optimierung können die SiO2-x-Schichten auf einer Substratfläche von 156 × 156 mm2 gleichmäßig abgeschieden werden. Das ist die derzeitige Standardgröße industriell hergestellter kristalliner Siliziumsolarzellen. Die Design-Studien hatten auch das Ziel, einen Injektor zu entwickeln, der ohne bewegte Teile für eine homogene Durchmischung der Gase sorgt. Das letztendlich geeignete Design wurde aus thermoplastischen Werkstoffen mit Hilfe von 3D-Druck im Schmelzschichtungsverfahren hergestellt. Ferner wurde die Reduzierung der Gasphasen-reaktion in der Nähe des Substrats durch Einstellung des Molverhältnisses der Reaktanden und eine geeignete Führung der Injektorabgase erreicht. Die Kondensation von Reaktanden und die parasitäre Oxidabscheidung auf den Innenflächen des APCVD-Injektors wurden erfolgreich vermieden, ohne dass ein bei Inline-APCVD-Injektoren üblicher Gasvorhang erforderlich ist. Die resultierenden APCVD- SiO2-x-Schichten wurden hinsichtlich ihrer chemischen und optischen Eigenschaften sowie ihrer Zusammensetzung umfassend charakterisiert, um ihre Qualität und Kompatibilität mit PV- und anderen potenziellen Anwendungen zu beurteilen. Dabei zeigte sich, dass die Schichten nahezu stöchiometrisch sind. Deswegen wurde die Bezeichnung SiO2-x anstelle von SiO2 gewählt. Die Abscheiderate wurde in Abhängigkeit von den Volumenströmen, der Substrattemperatur und dem Molverhältnis der Reaktanden untersucht. Die Variation der Substrattemperatur nahe der Raumtemperatur und des Molverhältnisses der Reaktanden führt zu einer großen Bandbreite von Abscheideraten und Materialeigenschaften. Die Hydroxylgehalte in den SiO2-x-Schichten wurden bei verschiedenen Abscheidebedingungen bestimmt. Es wurde gefunden, dass die Kalzinierung für 1 min bei relativ niedrigen Temperaturen kleiner 300 ˚C die Hydroxylgruppen in den abgeschiedenen Filmen deutlich reduziert. Die Nachteile der Kalzinierung bei hohen Temperaturen über 500 ˚C nach der Schichtabscheidung wurden ebenfalls untersucht. Optimierte Werte für das Molverhältnis der Reaktanden, der Substrattemperatur sowie der Kalzinierungstemperatur und -dauer wurden gefunden, um APCVD-SiO2-x-Schichten ohne mikroskopisch kleine Löcher und Risse zu erhalten, so dass sie für die verschiedenen PV-Anwendungen geeignet sind. Verschiedene kostengünstige Prozesse für die Herstellung von kristallinen Silizium-Solarzellen unter Verwendung der APCVD SiO2-x-Schichten wurden entwickelt. So konnten nach einseitiger SiO2-x-Beschichtung und einer 1-minütigen Kalzinierung einkristalline Si-Wafer mit alkalischer Ätzlösung einseitig texturiert werden. Eine weitere Anwendung ist die Verwendung von APCVD SiO2-x als Maske für die lokale galvanische Abscheidung des Vorderseiten-Metallkontakts auf Solarzellen mit Heteroübergang. Dabei wurde eine Ag-Paste in Form eines linienförmigen Kontakts mittels Siebdruck auf das transparente leitfähige Oxid (transparent conducting oxide, TCO) der Solarzellen dünn aufgebracht und nach einer ganzflächigen APCVD SiO2-x-Beschichtung der Solarzell-Vorderseite mit Cu galvanisch verstärkt. In einer anderen Prozesssequenz wurde eine Polymerpaste in Form des späteren linienförmigen Metallkontakts mittels Siebdruck auf das Vorderseiten-TCO der Solarzellen aufgebracht und nach der ganzflächigen Beschichtung mit APCVD-SiO2-x mit Lösungsmittel wieder entfernt. In die entstandenen lokalen Öffnungen der SiO2-x-Maske erfolgte die lokale galvanische Metallabscheidung direkt auf dem TCO. In der letzten untersuchten Anwendung wurden APCVD-SiO2-x-Schichten als Schutz vor parasitärer galvanischer Metallabscheidung auf der Vorderseite von einkristallinen pn-Solarzellen sowie auf der Rückseite von multikristallinen bifazialen pn-Solarzellen untersucht.

Schneckenburger, Max; Höfler, Sven; Garcia, Luis; Almeida, Rui; Börret, Rainer
Material removal predictions in the robot glass polishing process using machine learning. - In: SN applied sciences, ISSN 2523-3971, Bd. 4 (2022), 1, 33, insges. 14 S.

Robot polishing is increasingly being used in the production of high-end glass workpieces such as astronomy mirrors, lithography lenses, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With increasing optic sizes, the stability of the polishing process becomes more and more important. If not empirically known, the optical surface must be measured after each polishing step. One approach is to mount sensors on the polishing head in order to measure process-relevant quantities. On the basis of these data, machine learning algorithms can be applied for surface value prediction. Due to the modification of the polishing head by the installation of sensors and the resulting process influences, the first machine learning model could only make removal predictions with insufficient accuracy. The aim of this work is to show a polishing head optimised for the sensors, which is coupled with a machine learning model in order to predict the material removal and failure of the polishing head during robot polishing. The artificial neural network is developed in the Python programming language using the Keras deep learning library. It starts with a simple network architecture and common training parameters. The model will then be optimised step-by-step using different methods and optimised in different steps. The data collected by a design of experiments with the sensor-integrated glass polishing head are used to train the machine learning model and to validate the results. The neural network achieves a prediction accuracy of the material removal of 99.22%.