Gesamtliste der Publikationen

Anzahl der Treffer: 990
Erstellt: Mon, 29 Apr 2024 16:29:51 +0200 in 0.0648 sec


Tobehn-Steinhäuser, Ingo; Reiche, Manfred; Schmelz, Matthias; Stolz, Ronny; Fröhlich, Thomas; Ortlepp, Thomas
Carrier mobility in semiconductors at very low temperatures. - In: Engineering proceedings, ISSN 2673-4591, Bd. 6 (2021), 1, 86, insges. 5 S.

Carrier mobilities and concentrations were measured for different p- and n-type silicon materials in the temperature range 0.3-300 K. Simulations show that experimentally determined carrier mobilities are best described in this temperature range by Klaassen's model. Freeze-out reduces the carrier concentration with decreasing temperature. Freeze-out, however, depends on the dopant type and initial concentration. Semi-classical calculations are useful only for temperatures above 100 K. Otherwise quantum mechanical calculations are required.



https://doi.org/10.3390/I3S2021Dresden-10086
Ortlepp, Ingo; Stauffenberg, Jaqueline; Manske, Eberhard
Processing and analysis of long-range scans with an atomic force microscope (AFM) in combination with nanopositioning and nanomeasuring technology for defect detection and quality control. - In: Sensors, ISSN 1424-8220, Bd. 21 (2021), 17, 5862, insges. 17 S.

This paper deals with a planar nanopositioning and -measuring machine, the so-called nanofabrication machine (NFM-100), in combination with a mounted atomic force microscope (AFM). This planar machine has a circular moving range of 100 mm. Due to the possibility of detecting structures in the nanometre range with an atomic force microscope and the large range of motion of the NFM-100, structures can be analysed with high resolution and precision over large areas by combining the two systems, which was not possible before. On the basis of a grating sample, line scans over lengths in the millimetre range are demonstrated on the one hand; on the other hand, the accuracy as well as various evaluation methods are discussed and analysed.



https://doi.org/10.3390/s21175862
Belkner, Johannes; Ortlepp, Ingo; Gerhardt, Uwe; Manske, Eberhard
Compensating aberration induced error in differential confocal microscopy. - In: Optical Measurement Systems for Industrial Inspection XII, (2021), S. 117820P-1-117820P-10

Confocal microscopy is a working horse of optical profilometry since decades. It is a pointwise measurement method, where the whole sample must be scanned in all three dimensions. The high lateral resolution thereby outstrips its lowered scanning speed compared to widefield based principles. Furthermore, for a single 3D surface, even single-digit nanometre depth-resolution has been shown. However, albeit such high axial resolution, the accuracy may suffer from sample or optics induced wavefront distortions that differ from point to point. The acquired signal then experiences a shift that leads to a wrong acquired depth. Here we model this error through a low NA scalar model. We further present a method to compensate this error significantly by enhancing the principle of differential confocal microscopy. Theoretical results show the possibility for ideal compensation of the error caused by such in-stationary aberrations in confocal depth measurements.



https://doi.org/10.1117/12.2592392
Hosobuchi, Keiichiro; Oertel, Erik; Manske, Eberhard
Metrological investigation of a scanning electrostatic force microscope on a nano-positioning and nano-measuring machine. - In: Measurement science and technology, ISSN 1361-6501, Bd. 32 (2021), 10, 104012, insges. 7 S.

A surface profile measurement system was developed by combining a scanning electrostatic force microscope (SEFM) and a nano-measuring machine (NMM-1) and its characteristics were evaluated. SEFM is a type of scanning probe microscope (SPM) advocated in 2012. In SEFM, eliminating the trade-off between measurement accuracy, measurement speed, and stability has been a problem. As with other SPMs, the positioning accuracy of the probe and sample directly affects the measurement accuracy in SEFM. In this research, the SEFM principle was applied to the NMM-1, which is a high-precision positioning platform that achieves an uncertainty of smaller than 10 nm. In order to improve the force detection sensitivity, a probe polishing and assembling procedures was devised and, as a result, the quality factor of the sensor has been significantly improved. Furthermore, a method for optimizing scan parameters based on a theoretical model was proposed. The noise level of the measurement results was reduced by setting appropriate parameters, which agreed well with the theory. Profile measurements utilizing the developed measurement system were performed on line-and-space samples with an amplitude of 270 nm and a pitch of 10 [my]m. The results were compared with a conventional atomic force microscope as a reference. A surface measurement was performed on the sample, and a complete non-contact scan of a measurement range of 25 [my]m × 25 [my]m was demonstrated.



https://doi.org/10.1088/1361-6501/abf30c
Ortlepp, Ingo; Fröhlich, Thomas; Füßl, Roland; Reger, Johann; Schäffel, Christoph; Sinzinger, Stefan; Strehle, Steffen; Theska, René; Zentner, Lena; Zöllner, Jens-Peter; Rangelow, Ivo W.; Reinhardt, Carsten; Hausotte, Tino; Cao, Xinrui; Dannberg, Oliver; Fern, Florian; Fischer, David; Gorges, Stephan; Hofmann, Martin; Kirchner, Johannes; Meister, Andreas; Sasiuk, Taras; Schienbein, Ralf; Supreeti, Shraddha; Mohr-Weidenfeller, Laura; Weise, Christoph; Reuter, Christoph; Stauffenberg, Jaqueline; Manske, Eberhard
Tip- and laser-based 3D nanofabrication in extended macroscopic working areas. - In: Nanomanufacturing and metrology, ISSN 2520-8128, Bd. 4 (2021), 3, S. 132-148

The field of optical lithography is subject to intense research and has gained enormous improvement. However, the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies. This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable: custom design and solutions for specific applications will dominate future development (Fritze in: Panning EM, Liddle JA (eds) Novel patterning technologies. International society for optics and photonics. SPIE, Bellingham, 2021. https://doi.org/10.1117/12.2593229). For this reason, new aspects arise for future lithography, which is why enormous effort has been directed to the development of alternative fabrication technologies. Yet, the technologies emerging from this process, which are promising for coping with the current resolution and accuracy challenges, are only demonstrated as a proof-of-concept on a lab scale of several square micrometers. Such scale is not adequate for the requirements of modern lithography; therefore, there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies. Similar challenges arise because of the technical progress in various other fields, realizing new and unique functionalities based on nanoscale effects, e.g., in nanophotonics, quantum computing, energy harvesting, and life sciences. Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks, which are available at the Technische Universität Ilmenau in the form of nanopositioning and nanomeasuring (NPM) machines. With this equipment, the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters.



https://doi.org/10.1007/s41871-021-00110-w
Marin, Sebastian;
Entwicklung eines Temperatur-Blockkalibrators mit Temperaturabsolutwertbezug. - Ilmenau : Universitätsbibliothek, 2021. - 1 Online-Ressource (II, 155 Seiten)
Technische Universität Ilmenau, Dissertation 2021

Temperatur-Blockkalibratoren werden sehr häufig in der Industrie und in Kalibrierlaboratorien bei Vergleichskalibrierungen von Berührungsthermometern als Temperiereinrichtungen eingesetzt. Hierbei erfolgt die Temperierung der Thermometer in einem metallischen Ausgleichsblock, dessen Temperatur mit einem internen Referenzthermometer bestimmt wird. Für die Erzielung kleiner Messunsicherheiten stellen dabei die Ausbildung eines homogenen Temperaturfeldes im Ausgleichsblock sowie die Ermittlung dieser Temperatur mit rückführbar kalibrierten Referenzthermometern die größten Herausforderungen dar. In dieser Dissertation wird ein neues Konzept eines Temperatur-Blockkalibrators im Temperaturbereich von 80 ˚C bis 430 ˚C vorgestellt. Abweichend zum Stand der Technik besitzt der neue Blockkalibrator eine Mehrzonenheizung und Wärmestromsensoren im Ausgleichsblock. Beides sorgt für die Verbesserung der Temperaturhomogenität. Außerdem ist eine kompakte Mehrfachfixpunktzelle für die rückführbare in situ Kalibrierung des internen Referenzthermometers enthalten. Das Konzept des Temperatur-Blockkalibrators sowie seine konstruktive Realisierung werden mittels probabilistischer Berechnungen numerischer FEM-Simulationen untersucht und mit Zielrichtung bester Temperaturhomogenität im Ausgleichsblock optimiert. Auf dieses Modell gestützt werden die Heizleistungen für die Mehrzonenheizung abgeschätzt und ein Abkühlungskonzept erarbeitet. Zudem wird aus dem FEM-Modell ein Systemmodell in Zustandsraumdarstellung des Temperatur-Blockkalibrators hergeleitet. Dieses kann z.B. für eine Reglerauslegung verwendet werden. Die internationale Temperaturskala von 1990 nutzt Phasenumwandlungstemperaturen hochreiner Stoffe für ihre Definition. Diese Temperaturen FP sind idealerweise konstant, sehr gut reproduzierbar und international anerkannt. Die kompakte Mehrfachfixpunktzelle enthält die Fixpunktmaterialien Indium ([theta]FP = 156,5985 ˚C), Zinn ([theta]FP = 231,928 ˚C) und Zink ([theta]FP = 419,527 ˚C). Anhand dieser Fixpunkttemperaturen kann das interne Referenzthermometer des Temperatur-Blockkalibrators in situ rückführbar zur internationalen Temperaturskala kalibriert werden. Der Entwicklungsprozess der kompakten Mehrfachfixpunktzelle wird in dieser Arbeit ausführlich beschrieben. Ihre Geometrie wird nach thermischen und mechanischen Kriterien entworfen und auf Grundlage von probabilistischen Berechnungen mit FEM-Modellen optimiert. Ausgehend von einer Langzeitmessung wurden Unsicherheiten für die drei Fixpunkttemperaturen von kleiner als 60 mK (k = 2) bestimmt.



https://doi.org/10.22032/dbt.49288
Thompson, Adam; Southon, Nicholas; Fern, Florian; Stupfler, Gilles; Leach, Richard
Efficient empirical determination of maximum permissible error in coordinate metrology. - In: Measurement science and technology, ISSN 1361-6501, Bd. 32 (2021), 10, 105013, insges. 17 S.

Maximum permissible errors (MPEs) are an important measurement system specification and form the basis of periodic verification of a measurement system's performance. However, there is no standard methodology for determining MPEs, so when they are not provided, or not suitable for the measurement procedure performed, it is unclear how to generate an appropriate value with which to verify the system. Whilst a simple approach might be to take many measurements of a calibrated artefact and then use the maximum observed error as the MPE, this method requires a large number of repeat measurements for high confidence in the calculated MPE. Here, we present a statistical method of MPE determination, capable of providing MPEs with high confidence and minimum data collection. The method is presented with 1000 synthetic experiments and is shown to determine an overestimated MPE within 10% of an analytically true value in 99.2% of experiments, while underestimating the MPE with respect to the analytically true value in 0.8% of experiments (overestimating the value, on average, by 1.24%). The method is then applied to a real test case (probing form error for a commercial fringe projection system), where the efficiently determined MPE is overestimated by 0.3% with respect to an MPE determined using an arbitrarily chosen large number of measurements.



https://doi.org/10.1088/1361-6501/ac0c49
Pahl, Tobias; Hagemeier, Sebastian; Bischoff, Jörg; Manske, Eberhard; Lehmann, Peter
Rigorous 3D modeling of confocal microscopy on 2D surface topographies. - In: Measurement science and technology, ISSN 1361-6501, Bd. 32 (2021), 9, 094010, insges. 15 S.

Although optical 3D topography measurement instruments are widespread, measured profiles suffer from systematic deviations occurring due to the wave characteristics of light. These deviations can be analyzed by numerical simulations. We present a 3D modeling of the image formation of confocal microscopes. For this, the light-surface interaction is simulated using two different rigorous methods, the finite element method and the rigorous coupled-wave analysis. The image formation in the confocal microscope is simulated using a Fourier optics approach. The model provides high accuracy and advantages with respect to the computational effort as a full 3D model is applied to 2D structures and the lateral scanning process of the confocal microscope is considered without repeating the time consuming rigorous simulation of the scattering process. The accuracy of the model is proved considering different deterministic surface structures, which usually cause strong systematic deviations in measurement results. Further, the influences of apodization and a finite pinhole size are demonstrated.



https://doi.org/10.1088/1361-6501/abfd69
Weigert, Florian; Hebenstreit, Roman; Füßl, Roland; Theska, René
Experimental setup for the investigation of reproducibility of novel tool changing systems in nanofabrication machines. - In: Nanomanufacturing and metrology, ISSN 2520-8128, Bd. 4 (2021), 3, S. 181-189

Nanomeasuring machines developed at the Technische Universität Ilmenau enable three-dimensional measurements and manufacturing processes with the lowest uncertainties. Due to the requirements for these processes, a highly reproducible and long-term stable tool changing system is needed. For this purpose, kinematically determined couplings are widely used. The state-of-the-art investigations on those are not sufficient for the highest demands on the reproducibility required for this application. A theoretical determination of the reproducibility based on analytical or numerical methods is possible, however not in the desired nanometer range. Due to this, a measurement setup for the determination of the reproducibility in five degrees of freedom with nanometer uncertainty was developed. First, potential measuring devices are systematically examined and measurement principles were developed out of this. A three-dimensional vector-based uncertainty analysis is performed to prove the feasibility of the measurement principle and provides a basis for further design. As a result, a translatory measurement uncertainty of 10 nm and a rotatory uncertainty of 11 nrad can be reached. Afterwards, the measurement setup is designed, focusing on the metrological frame and the lift-off device. The developed setup exceeds the uncertainties of the measurement setups presented in the state-of-the-art by an order of magnitude, allowing new in-depth investigations of the reproducibility of kinematic couplings.



https://doi.org/10.1007/s41871-021-00103-9
Straube, Guido; Fischer Calderón, Juan Sebastian; Ortlepp, Ingo; Füßl, Roland; Manske, Eberhard
A heterodyne interferometer with separated beam paths for high-precision displacement and angular measurements. - In: Nanomanufacturing and metrology, ISSN 2520-8128, Bd. 4 (2021), 3, S. 200-207

As standard concepts for precision positioning within a machine reach their limits with increasing measurement volumes, inverse concepts are a promising approach for addressing this problem. The inverse principle entails other limitations, as for high-precision positioning of a sensor head within a large measurement volume, three four-beam interferometers are required in order to measure all necessary translations and rotations of the sensor head and reconstruct the topography of the reference system consisting of fixed mirrors in the x-, y-, and z-directions. We present the principle of a passive heterodyne laser interferometer with consequently separated beam paths for the individual heterodyne frequencies. The beam path design is illustrated and described, as well as the design of the signal-processing and evaluation algorithm, which is implemented using a System-On-a-Chip with an integrated FPGA, CPU, and A/D converters. A streamlined bench-top optical assembly was set up and measurements were carried out to investigate the remaining non-linearities. Additionally, reference measurements with a commercial homodyne interferometer were executed.



https://doi.org/10.1007/s41871-021-00101-x