Congress & Conference Contributions of InIT at TU IlmenauCongress & Conference Contributions of InIT at TU Ilmenau
Results: 2081
Created on: Thu, 16 May 2024 23:01:20 +0200 in 0.1343 sec


Manina, Alla; Grasis, Mikus; Khamidullina, Liana; Korobkov, Alexey; Haueisen, Jens; Haardt, Martin
Coupled CP decomposition of EEG and MEG magnetometer and gradiometer measurements via the coupled SECSI framework. - In: Conference record of the Fifty-Fifth Asilomar Conference on Signals, Systems & Computers, (2021), S. 1661-1667

Recent research has shown that the joint processing of simultaneously recorded EEG-MEG signals can be beneficial compared to the separate analysis of data if the corresponding tensors have one of their factor matrices in common. In this study, we perform a joint CP decomposition of simultaneously recorded EEG and MEG magnetometer as well as gradiometer measurements via a new extension of the coupled SEmi-Algebraic framework for the approximate CP decomposition via SImultaneous matrix diagonalization (SECSI) to jointly factorize several tensors with at least one factor matrix in common. In case of the biomedical data, the four measured tensors have the factor matrix in the frequency domain in common. The developed coupled SECSI algorithm allows extracting the signal sources even in ill-conditioned scenarios. In the final processing step, coupled SECSI chooses the best out of a variety of possible factor matrix estimates, i.e., a combination that leads to the smallest value of the reconstruction error. However, for data tensors that do not exhibit significant coupling, the uncoupled solution can also be selected. The results are evaluated on measured as well as on synthetic data and compared with other state-of-the-art approaches.



https://doi.org/10.1109/IEEECONF53345.2021.9723118
Chen, Lin; Jiang, Xue; Zhong, Zhimeng; Liu, Xingzhao; Haardt, Martin
Tensor-based downlink channel reconstruction for FDD massive MIMO. - In: Conference record of the Fifty-Fifth Asilomar Conference on Signals, Systems & Computers, (2021), S. 1453-1458

The acquisition of downlink channel state information (CSI) at the base station is a prerequisite for various applications in frequency division duplex (FDD) massive multipleinput multiple-output (MIMO) systems. To obtain accurate CSI, conventional approaches employ downlink training and feedback with a considerable overhead. In this paper, we exploit the partial reciprocity between FDD uplink and downlink channels to propose a tensor-based method for downlink channel reconstruction. According to this partial reciprocity, the tensor-based method efficiently estimates angle and delay parameters of the downlink channel from the uplink channel. Then, downlink training and feedback are incorporated by exploiting the sparse scattering property of the channel, so as to estimate the gain parameters of the multipath components with a small amount of overhead. Downlink channel reconstruction is achieved according to the estimated gain, angle and delay parameters. Experimental results on a Ray-tracing dataset demonstrate the effectiveness of the proposed downlink training and feedback scheme, and the superior channel estimation of the proposed tensor-based method compared with several alternative methods.



https://doi.org/10.1109/IEEECONF53345.2021.9723411
Gherekhloo, Sepideh; Ardah, Khaled; Almeida, André L. F. de; Haardt, Martin
Tensor-based channel estimation and reflection design for RIS-aided millimeter-wave MIMO communication systems. - In: Conference record of the Fifty-Fifth Asilomar Conference on Signals, Systems & Computers, (2021), S. 1683-1689

In this work, we consider both channel estimation and reflection coefficient design problems in point-to-point reconfigurable intelligent surface (RIS)-aided millimeter-wave (mmWave) MIMO communication systems. First, we show that by exploiting the low-rank nature of mmWave MIMO channels, the received training signals can be written as a low-rank multi-way tensor admitting a canonical polyadic (CP) decomposition. Utilizing such a structure, a tensor-based RIS channel estimation method (termed TenRICE) is proposed, wherein the tensor factor matrices are estimated using an alternating least squares method. Using TenRICE, the transmitter-to-RIS and the RIS-to-receiver channels are efficiently and separately estimated, up to a trivial scaling factor. After that, we formulate the beamforming and RIS reflection coefficient design as a spectral efficiency maximization task. Due to its non-convexity, we propose a heuristic non-iterative two-step method, where the RIS reflection vector is obtained in a closed form using a Frobenius-norm maximization (FroMax) strategy. Our numerical results show that TenRICE has a superior performance, compared to benchmark methods, approaching the Cramér-Rao lower bound with a low training overhead. Moreover, we show that FroMax achieves a comparable performance to benchmark methods with a lower complexity.



https://doi.org/10.1109/IEEECONF53345.2021.9723362
Mercier, Mathieu; Mioc, Francesca; Rutkowski, Kim; Scannavini, Alessandro; Nowack, Tobias; Bornkessel, Christian; Hein, Matthias
Evaluation of integral quantities of over the air automotive antenna measurements. - In: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, (2021), S. 1954-1955

This document outlines the Over the Air (OTA) testing methodology which is currently employed for full automotive antennas and provides a pertinent Figure of Merit.



https://doi.org/10.1109/APS/URSI47566.2021.9704228
Khamidullina, Liana; Almeida, André L. F. de; Haardt, Martin
ML-GSVD-based MIMO-NOMA networks. - In: WSA 2021, (2021), S. 53-58

Rakhimov, Damir Raisovich; Rakhimov, Adel; Nadeev, Adel; Haardt, Martin
Tensor formulation of the Cramer-Rao lower bound for beamspace channel estimation in mmWave MIMO-OFDM. - In: WSA 2021, (2021), S. 29-34

Gholamhosseinian, Ashkan; Seitz, Jochen
Safety-centric vehicle classification using vehicular networks. - In: The 18th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), the 16th International Conference on Future Networks and Communications (FNC), the 11th International Conference on Sustainable Energy Information Technology, (2021), S. 238-245

This paper investigates the vehicle classification (VC) based on vehicular ad-hoc networks (VANETs). Using VANETs, one can extract the physical and mobility characteristics of the vehicles globally and in a real-time manner. In this paper, we propose an in-depth novel safety-driven VC method for heterogeneous connected vehicles. In this innovative approach, road vehicles are classified into a broad range of classes according to their distinctive behaviors and safety measures. The proposed method can play a vital role in reducing collisions and can be used as a safety standard reference in VANETs-based VC systems. Furthermore, advance driver assistance systems (ADAS) can integrate this method and extend road safety by notifying vehicles of dangerous situations on the road using V2X communication.



https://doi.org/10.1016/j.procs.2021.07.030
Alshra'a, Abdullah Soliman; Farhat, Ahmad; Seitz, Jochen
Deep learning algorithms for detecting denial of service attacks in Software-Defined Networks. - In: The 18th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), the 16th International Conference on Future Networks and Communications (FNC), the 11th International Conference on Sustainable Energy Information Technology, (2021), S. 254-263

In Software-Defined Networking (SDN) the controller is the only entity that has the complete view on the network, and it acts as the brain, which is responsible for traffic management based on its global knowledge of the network. Therefore, an attacker attempts to direct malicious traffic towards the controller, which could lead to paralyze the entire network. In this work, Deep Learning algorithms are used to protect the controller by applying high-security measures, which is essential for the continuous availability and connectivity in the network. Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are proposed to recognize and prevent the intrusion attacks. We evaluate our models using a recently released dataset (InSDN dataset). Finally, our experiments manifest that our models achieve very high accuracy for the detection of Denial of Service (DoS) attacks. Thus, a significant improvement in attack detection can be shown compared to one of the benchmarking state of the art approaches.



https://doi.org/10.1016/j.procs.2021.07.032
Tayyab, Umais; Kumar, Ashish; Li, Yihan; Stephan, Ralf; Hein, Matthias; Singh, Jasmeet
Plastic-embedded patch antenna array for automotive satellite communication in the Ka-band. - In: 2021 1st International Conference on Microwave, Antennas & Circuits (ICMAC), (2021), S. 1-4

https://doi.org/10.1109/ICMAC54080.2021.9678254