Journal articles and book contributions

Anzahl der Treffer: 1444
Erstellt: Wed, 15 May 2024 23:03:31 +0200 in 0.0643 sec


Peipmann, Ralf; Bund, Andreas; Schmidt, Udo
Simulation verschiedener Hull-Zellen-Geometrien, Teil 1 - spezielle Elektrodengeometrien in 2D und 3D. - In: Galvanotechnik, ISSN 0016-4232, Bd. 112 (2021), 10, S. 1315-1323

Wang, Qi; Cheng, Xing; Sun, Yukun; Sun, Zaicheng; Wang, Dong; Chen, Ge; Schaaf, Peter
A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/Nickel Foam catalyst. - In: Materials advances, ISSN 2633-5409, Bd. 2 (2021), 6, S. 2104-2111

The urea-assisted water electrolysis reactions are of great significance for solving the increasingly serious energy crisis and environmental pollution. Recently, the photo-driven effect strategy has been demonstrated to be an efficient external driving force for improving electrocatalytic activities. Herein, we synthesized Ni-NiO heterostructured nanosheet arrays grown on Ni foam (denoted as Ni-NiO/NF) as a bifunctional electrocatalyst enhancing the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) activities simultaneously under light irradiation. Moreover, when the catalyst is used in a two-electrode system for the urea-assisted water electrolysis reaction, the cell potential could be reduced to 1.48 V to achieve the current density of 10 mA cm-2 after exposure to light irradiation, as well as remarkable stability. Our studies demonstrate that the enhancement of the HER & UOR activities is attributed to a synergetic effect between photogenerated carriers and photothermy.



https://doi.org/10.1039/D1MA00038A
Cheng, Pengfei; Kampmann, Ronald; Wang, Dong; Sinzinger, Stefan; Schaaf, Peter
Tailoring patterned visible-light scattering by silicon photonic crystals. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 13 (2021), 50, S. 60319-60326

Searching for the relationship between the nanostructure and optical properties has always been exciting the researchers in the field of optics (linear optics as well as non-linear optics), energy harvesting (anti-reflective Si solar cells, perovskite solar cells, ..., etc.), and industry (anti-reflection coating on car windows, sunglasses, etc.). In this work, we present an approach for nanostructuring the silicon substrate to silicon photonic crystals. By precisely controlling the etching time and etching path after using nanoimprint lithography, ordered arrays of inverted Si nanopyramids and Si nanopillars with good homogeneity, uniform surface roughness, high reproducibility of pattern transfer, and a controllable aspect ratio are prepared. Experimental investigation of the optical properties indicates that the reflections of these Si nanostructures are mainly determined by the aspect ratio as well as the period of nanostructures. Furthermore, we have experimentally observed visible-light scattering (V-LS) patterns on inverted Si nanopyramids and Si nanopillars, and their corresponding patterns can be precisely controlled by the patterned nanostructures. The V-LS pattern, background, and "ghost peaks" on the angle-resolved scattering results are caused by constructive interference, destructive interference, and the interference situation between both. This controllable nanopatterning on crystalline Si substrates with precisely tunable optical properties shows great potential for applications in many fields, for example, optics, electronics, and energy.



https://doi.org/10.1021/acsami.1c16182
Baloochi, Mostafa; Shekhawat, Deepshikha; Riegler, Sascha Sebastian; Matthes, Sebastian; Glaser, Marcus; Schaaf, Peter; Bergmann, Jean Pierre; Gallino, Isabella; Pezoldt, Jörg
Influence of initial temperature and convective heat loss on the self-propagating reaction in Al/Ni multilayer foils. - In: Materials, ISSN 1996-1944, Bd. 14 (2021), 24, 7815, insges. 15 S.

A two-dimensional numerical model for self-propagating reactions in Al/Ni multilayer foils was developed. It was used to study thermal properties, convective heat loss, and the effect of initial temperature on the self-propagating reaction in Al/Ni multilayer foils. For model adjustments by experimental results, these Al/Ni multilayer foils were fabricated by the magnetron sputtering technique with a 1:1 atomic ratio. Heat of reaction of the fabricated foils was determined employing Differential Scanning Calorimetry (DSC). Self-propagating reaction was initiated by an electrical spark on the surface of the foils. The movement of the reaction front was recorded with a high-speed camera. Activation energy is fitted with these velocity data from the high-speed camera to adjust the numerical model. Calculated reaction front temperature of the self-propagating reaction was compared with the temperature obtained by time-resolved pyrometer measurements. X-ray diffraction results confirmed that all reactants reacted and formed a B2 NiAl phase. Finally, it is predicted that (1) increasing thermal conductivity of the final product increases the reaction front velocity; (2) effect of heat convection losses on reaction characteristics is insignificant, e.g., the foils can maintain their characteristics in water; and (3) with increasing initial temperature of the foils, the reaction front velocity and the reaction temperature increased.



https://doi.org/10.3390/ma14247815
Zgheib, Charbel; Lubov, Maxim N.; Kulikov, Dmitri V.; Kharlamov, Vladimir S.; Thiele, Sebastian; Morales Sánchez, Francisco Miguel; Romanus, Henry; Rahbany, Nancy; Beainy, Georges; Stauden, Thomas; Pezoldt, Jörg
Chemoheteroepitaxy of 3C-SiC(111) on Si(111): influence of predeposited Ge on structure and composition. - In: Physica status solidi, ISSN 1862-6319, Bd. 218 (2021), 24, 2100399, S. 1-10

Secondary ion mass spectroscopy, Fourier transformed infrared spectroscopy, ellipsometry, reflection high energy diffraction and transmission electron microscopy are used to gain inside into the effect of Ge on the formation of ultrathin 3C-SiC layers on Si(111) substrates. Accompanying the experimental investigations with simulations it is found that the ultrathin single crystalline 3C-SiC layer is formed on top of a gradient Si1-x-yGexCy buffer layer due to a complex alloying and alloy decomposition processes promoted by carbon and germanium interdiffusion and SiC nucleation. This approach allows tuning residual stress at very early growth stages as well as the interface properties of the 3C-SiC/Si heterostructure. Useful yields of secondary ions of Ge in Si matrix and Si dimer are estimated.



https://doi.org/10.1002/pssa.202100399
Wu, Xuping; Chen, Honglei; Luo, Xuemei; Wang, Dong; Schaaf, Peter; Zhang, Guangping
Ultrasensitive strain sensors based on Cu-Al alloy films with voided cluster boundaries. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. 6 (2021), 12, 2100524, insges. 12 S.

https://doi.org/10.1002/admt.202100524
Dashtestani, Ashkan Djaberi; Moeinian, Ardeshir; Biskupek, Johannes; Strehle, Steffen
Contamination-assisted rather than metal catalyst-free bottom-up growth of silicon nanowires. - In: Advanced materials interfaces, ISSN 2196-7350, Bd. 8 (2021), 22, 2101121, insges. 9 S.

Well-established metal-catalyzed vapor-liquid-solid (VLS) growth represents still undoubtedly the key technology for bottom-up synthesis of single-crystalline silicon nanowires (SiNWs). Although various SiNW applications are demonstrated, electrical and optical properties are exposed to the inherent risk of electronic deep trap state formation by metal impurities. Therefore, metal catalyst-free growth strategies are intriguing. The oxid-assisted SiNW synthesis is explored and it is shown that contamination control is absolutely crucial. Slightest metal impurities, such as iron, are sufficient to trigger SiNW growth, calling into question true metal catalyst-free SiNW synthesis. Therefore, the term contamination-assisted is rather introduced and it is shown that contamination-assisted SiNW growth is determined by the chemical surface treatment (e.g., with KOH solution), but also by the crystal orientation of a silicon substrate. SiNWs are grown in this regards in a reproducible manner, but so far with a distinct tapering, using a conventional gas-phase reactor system at temperatures of about 680 ˚C and monosilane (SiH4) as the precursor gas. The synthesized SiNWs show convincing electrical properties compared to Au-catalyzed SiNWs. Nevertheless, contamination-assisted growth of SiNWs appears to be an important step toward bottom-up synthesis of high-quality SiNWs with a lower risk of metal poisoning, such as those needed for CMOS and other technologies.



https://doi.org/10.1002/admi.202101121
Cheng, Pengfei; Ziegler, Mario; Ripka, Valentin; Wang, Dong; Wang, Hongguang; Aken, Peter Antonie van; Schaaf, Peter
Bio-inspired self-assembly of large area 3D AgSiO2 plasmonic nanostructures with tunable broadband light harvesting. - In: Applied materials today, ISSN 2352-9407, Bd. 25 (2021), 101238

Tremendous efforts have been made to fabricate large-scale plasmonic nanostructures, which show wide applications in surface plasmon resonance (SPR) sensing, catalytic conversion, photothermal conversion, optoelectronics, photothermal therapy. However, unable to fabricate over 5 cm^2 plasmonic nanostructures with good controllability hinders their further applications. Here, super large-scale (153 cm^2) 3D AgSiO2 hybrid plasmonic nanostructures with adjustable and ultra-broadband light absorption are fabricated by a simple and controllable two-step approach. The metastable atomic layer deposition (MS-ALD) is combined with physical vapor deposition (PVD) to generate these structures in a self-assembly manner. The structures look like coral tentacles. These excellent properties are attributed to multiple forward scatterings and extinction effects produced by Ag@SiO2 nanostructures. Using 3D Ag@SiO2 plasmonic nanostructures as light absorber for bottom-heating-based evaporation, the water evaporation rate remarkably improves seven times under 1 Sun than that in dark condition. Our results pave the avenue for developing super large-scale Ag-based plasmonic nanostructure with potential applications in solar energy conversion.



https://doi.org/10.1016/j.apmt.2021.101238
Nandy, Manali; Paszuk, Agnieszka; Feifel, Markus; Koppka, Christian; Kleinschmidt, Peter; Dimroth, Frank; Hannappel, Thomas
A route to obtaining low-defect III-V epilayers on Si(100) utilizing MOCVD. - In: Crystal growth & design, ISSN 1528-7505, Bd. 21 (2021), 10, S. 5603-5613

Low-defect III-V multilayer structures grown on Si(100) open opportunities for a wide range of cost-effective high-performance photovoltaic and optoelectronic devices. For that, (Al)GaP epilayers prepared almost lattice-matched on Si(100) substrates can serve as high-quality virtual substrates for subsequent heteroepitaxial growth. The evolution of crystal defects, such as stacking fault pyramids or threading dislocations, needs to be impeded already during the first preparation step, the III-V-on-Si nucleation, as they tend to propagate into the subsequently grown layers and increase nonradiative electron-hole recombination rates, which finally degrade the device performance. We establish a ternary GaP/AlP pulsed nucleation process on Si(100) substrates fabricated by metalorganic chemical vapor deposition, and compare it to the defect evolution from pure GaP nucleation layers (NLs). The entire procedure was optically monitored in situ using reflection anisotropy spectroscopy. Crystal defects were investigated by electron channeling contrast imaging. GaP grown on GaP/AlP NLs exhibits drastically reduced densities of threading dislocations and stacking faults by 1 and 2 orders of magnitude, respectively, compared to buffer layers grown on binary GaP NLs. We observed that the surface morphology at the initial stage of growth of these buffer layers is significantly smoother compared to the buffer layers grown on pure GaP NLs using atomic force microscopy. The proposed nucleation procedure here is supposed to substantially improve the crystalline quality of III-V buffer layers integrated on Si(100) wafers.



https://doi.org/10.1021/acs.cgd.1c00410
Sauni Camposano, Yesenia Haydee; Riegler, Sascha Sebastian; Jaekel, Konrad; Schmauch, Jörg; Pauly, Christoph; Schäfer, Christian; Bartsch, Heike; Mücklich, Frank; Gallino, Isabella; Schaaf, Peter
Phase transformation and characterization of 3D reactive microstructures in nanoscale Al/Ni multilayers. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 19, 9304, S. 1-13

Reactive multilayer systems represent an innovative approach for potential usage in chip joining applications. As there are several factors governing the energy release rate and the stored chemical energy, the impact of the morphology and the microstructure on the reaction behavior is of great interest. In the current work, 3D reactive microstructures with nanoscale Al/Ni multilayers were produced by alternating deposition of pure Ni and Al films onto nanostructured Si substrates by magnetron sputtering. In order to elucidate the influence of this 3D morphology on the phase transformation process, the microstructure and the morphology of this system were characterized and compared with a flat reactive multilayer system on a flat Si wafer. The characterization of both systems was carried out before and after a rapid thermal annealing treatment by using scanning and transmission electron microscopy of the cross sections, selected area diffraction analysis, and differential scanning calorimetry. The bent shape of multilayers caused by the complex topography of silicon needles of the nanostructured substrate was found to favor the atomic diffusion at the early stage of phase transformation and the formation of two intermetallic phases Al0.42Ni0.58 and AlNi3, unlike the flat multilayers that formed a single phase AlNi after reaction.



https://doi.org/10.3390/app11199304