Journal articles and book contributions

Anzahl der Treffer: 1443
Erstellt: Fri, 26 Apr 2024 23:03:54 +0200 in 0.0792 sec


Smyrnova, Kateryna; Sahul, Martin; Haršáni, Marián; Beresnev, Vyacheslav; Truchlý, Martin; Čaplovič, L’ubomír; Čaplovičová, Mária; Kusý, Martin; Kozak, Andrii; Flock, Dominik; Kassymbaev, Alexey; Pogrebnjak, Aleksandr Dmitrievič
Composite materials with nanoscale multilayer architecture based on cathodic-arc evaporated WN/NbN coatings. - In: ACS omega, ISSN 2470-1343, Bd. 9 (2024), 15, S. 17247-17265

Hard nitride coatings are commonly employed to protect components subjected to friction, whereby such coatings should possess excellent tribomechanical properties in order to endure high stresses and temperatures. In this study, WN/NbN coatings are synthesized by using the cathodic-arc evaporation (CA-PVD) technique at various negative bias voltages in the 50-200 V range. The phase composition, microstructural features, and tribomechanical properties of the multilayers are comprehensively studied. Fabricated coatings have a complex structure of three nanocrystalline phases: β-W2N, δ-NbN, and ε-NbN. They demonstrate a tendency for (111)-oriented grains to overgrow (200)-oriented grains with increasing coating thickness. All of the data show that a decrease in the fraction of ε-NbN phase and formation of the (111)-textured grains positively impact mechanical properties and wear behavior. Investigation of the room-temperature tribological properties reveals that with an increase in bias voltage from −50 to −200 V, the wear mechanisms change as follows: oxidative &flech; fatigue and oxidative &flech; adhesive and oxidative. Furthermore, WN/NbN coatings demonstrate a high hardness of 33.6-36.6 GPa and a low specific wear rate of (1.9-4.1) × 10-6 mm3/Nm. These results indicate that synthesized multilayers hold promise for tribological applications as wear-resistant coatings.



https://doi.org/10.1021/acsomega.3c10242
Langgemach, Wiebke; Rädlein, Edda
A new method for evaluating the influence of coatings on the strength and fatigue behavior of flexible glass. - In: Journal of electronic materials, ISSN 1543-186X, Bd. 0 (2024), 0, insges. 11 S.

Flexible glass is an interesting substrate for a variety of displays, especially bendable or foldable ones, as it shows excellent surface properties and appealing haptics. With the necessary skill, flexible glass can be coated with thin films of different functionality, such as electrical or optical thin films, using plasma processes. In displays, thin film coatings such as transparent conductive electrodes and/or antireflective layer stacks are of major importance. Despite its attractive surface properties, however, flexible glass is still brittle, and its strength must be examined and monitored during any functionalization process, especially with regard to the fatigue behaviour. Currently, specific setups for cyclic fatigue testing of coated flexible glass are not available. Therefore, a new test method is presented herein for easy-to-handle rapid strength and fatigue testing using an endurance testing machine. This method overcomes two issues with the commonly used two-point bending test: the correct insertion of specimens is much easier, and both strength and fatigue testing using the same setup are now possible. Finite element method (FEM) simulation outcomes and first experimental simple fracture tests show that results comparable to those with a two-point bending test setup can be achieved with less effort. This makes it possible to analyze the fracture behaviour of flexible glass under cyclic loading and to evaluate the influence of thin film stress and other coating properties on its performance.



https://doi.org/10.1007/s11664-024-11015-x
Zhao, Yuguo; Björk, Emma M.; Yan, Yong; Schaaf, Peter; Wang, Dong
Recent progress in transition metal based catalysts and mechanism analysis for alcohol electrooxidation reactions. - In: Green chemistry, ISSN 1463-9270, Bd. 0 (2024), 0, insges. 17 S.

In order to address energy and environmental challenges effectively, there is a need to promote renewable energy-driven electrochemical conversion technologies, particularly electrosynthesis. Electrosynthesis has the potential to convert abundant molecules into valuable chemicals and fuels. However, the widespread adoption of electrosynthesis is often hindered by the slow oxygen evolution reaction (OER). To overcome this limitation, we can employ the more efficient alcohol electrooxidation reaction (AOR), utilizing renewable biomass-derived alcohols as an alternative to OER for producing high-value chemicals. Consequently, the development of efficient AOR catalysts, in conjunction with cathodic reduction reactions (hydrogen evolution, oxygen, and nitrogen electroreduction, etc.), is crucial for sustainable and environmentally-friendly advancements. A thorough understanding of AOR mechanisms is essential for catalyst design and can be achieved through the utilization of in situ characterization techniques and density functional theory (DFT) calculations. This review summarizes recent progress in AOR catalysts, with a particular focus on the electrooxidation of monohydric alcohols, polyols, and associated studies on reaction mechanisms. Additionally, the review identifies key factors impeding AOR development and provides insights into future prospects.



https://doi.org/10.1039/D4GC00227J
Jaekel, Konrad; Riegler, Sascha Sebastian; Sauni Camposano, Yesenia Haydee; Matthes, Sebastian; Glaser, Marcus; Bergmann, Jean Pierre; Schaaf, Peter; Gallino, Isabella; Müller, Jens; Bartsch, Heike
Influence of increasing density of microstructures on the self-propagating reaction of Al/Ni reactive nanoscale multilayers. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, insges. 21 S.

Surface structuring methods are crucial in semiconductor manufacturing, as they enable the creation of intricate structures on the semiconductor surface, influencing the material’s electrical, mechanical, and chemical properties. This study employs one such structuring method known as reactive ion etching to create black Si structures on silicon substrates. After thermal oxidation, their influence on the reaction of Al/Ni nanoscale multilayers is. For this purpose, various densities of thermally oxidized black Si structures are investigated. It reveals distinct reactive behaviors without corresponding differences in energy release during differential scanning calorimetry measurements. Higher oxidized black Si structure densities result in elevated temperatures and faster reaction propagation, showing fewer defects and reduced layer connections in cross-sectional analyses. The properties of the reactive multilayers on high structure density show the same performance as a reaction on flat thermal SiO2, causing delamination when exceeding 23 structures per µm2. Conversely, lower structure density ensures attachment of reactive multilayers to the substrate due to an increased number of defects, acting as predetermined breaking points for the AlNi alloy. By establishing the adhesion between the reacted multilayer and the substrate, surface structuring could lead to a potential increase in bond strength when using reactive multilayers for bonding.



https://doi.org/10.1002/adem.202302225
Matthes, Sebastian; Glaser, Marcus; Vardo, Emina; Sauni Camposano, Yesenia Haydee; Jaekel, Konrad; Bergmann, Jean Pierre; Schaaf, Peter
Tailoring the reaction path: external crack initiation in reactive Al/Ni multilayers. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2302271, S. 1-6

The influence of intentionally externally induced cracks in reactive Al/Ni multilayer systems is investigated. These cracks affect the reaction dynamics and enable tailoring of the reaction path and the overall velocity of the reaction front. The influence of layer variations onto mechanical crack formation and resulting reaction behavior are investigated. High-speed camera imaging shows the meandering propagation of the reaction front along the crack paths. Therefore, the mechanical cracking process significantly changes the total velocity of the reaction front and thus offers a possibility to control the self-propagating high-temperature synthesis process. It is shown that the phase formation remains unaffected despite the applied strains and cracks. This favorable stability in phase formation ensures predictability and provides insight into the adaptation of RMS for precision applications in joints. The results expand the understanding of mechanical cracking as a tool to influence high-temperature synthesis in reactive multilayer coatings and provide an opportunity to expand the range of applications.



https://doi.org/10.1002/adem.202302271
Abedin, Saadman; Kurtash, Vladislav; Mathew, Sobin; Thiele, Sebastian; Jacobs, Heiko O.; Pezoldt, Jörg
Defects contributing to hysteresis in few-layer and thin-film MoS2 memristive devices. - In: Materials, ISSN 1996-1944, Bd. 17 (2024), 6, 1350, S. 1-14

Molybdenum disulfide, a two-dimensional material extensively explored for potential applications in non-von Neumann computing technologies, has garnered significant attention owing to the observed hysteresis phenomena in MoS2 FETs. The dominant sources of hysteresis reported include charge trapping at the channel-dielectric interface and the adsorption/desorption of molecules. However, in MoS2 FETs with different channel thicknesses, the specific nature and density of defects contributing to hysteresis remain an intriguing aspect requiring further investigation. This study delves into memristive devices with back-gate modulated channel layers based on CVD-deposited flake-based and thin-film-based MoS2 FETs, with a few-layer (FL) and thin-film (TF) channel thickness. Analysis of current-voltage (I−V) and conductance-frequency (Gp/ω−f) measurements led to the conclusion that the elevated hysteresis observed in TF MoS2 devices, as opposed to FL devices, stems from a substantial contribution from intrinsic defects within the channel volume, surpassing that of interface defects. This study underscores the significance of considering both intrinsic defects within the bulk and the interface defects of the channel when analyzing hysteresis in MoS2 FETs, particularly in TF FETs. The selection between FL and TF MoS2 devices depends on the requirements for memristive applications, considering factors such as hysteresis tolerance and scaling capabilities.



https://doi.org/10.3390/ma17061350
Glaser, Marcus; Ehlich, Kai; Matthes, Sebastian; Hildebrand, Jörg; Schaaf, Peter; Bergmann, Jean Pierre
Influence of metal surface structures on composite formation during polymer-metal-joining based on reactive Al/Ni multilayer foil. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, insges. 34 S.

Progressive developments in the field of lightweight construction and engineering demand continuous substitution of metals with suitable polymers. However, the combination of dissimilar materials results in a multitude of challenges based on different chemical and physical material properties. Reactive multilayer systems offer a promising joining method for flexible and low-distortion joining of dissimilar joining partners with an energy source introduced directly into the joining zone. Within this publication, hybrid lap joints between semi-crystalline polyamide 6 and surface-structured austenitic steel X5CrNi18-10 (EN 1.4301) were joined using reactive Al/Ni multilayer foils of the type Indium-NanoFoil®. Main objective is to examine possibilities of influencing crack initiation in the foil plane by variation of joining pressure and different metal surface structures with regard to geometry, density and orientation. Thus, the position of foil cracks is superimposed onto the metal structure and associated filling with molten plastic is improved. Consequently, characterisation of occurring crack positions as function of joining pressure and metal structure, analysis of the composite in terms of structural filling and joint strength as well as possible causes of crack initiation are evaluated.



https://doi.org/10.1002/adem.202302254
Mejia Chueca, Maria del Carmen; Winter, Andreas; Abdi, Azadeh; Baumer, Christoph; Ispas, Adriana; Stich, Michael; Riegler, Sascha; Ecke, Gernot; Isaac, Nishchay Angel; Graske, Marcus; Gallino, Isabella; Schaaf, Peter; Jacobs, Heiko O.; Bund, Andreas
A novel method for preparation of Al-Ni reactive coatings by incorporation of Ni nanoparticles into an Al matrix fabricated by electrodeposition in AlCl3:1-ethyl-3-methylimidazolium chloride (1.5:1) ionic liquid containing Ni nanoparticles. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2302217, S. 1-17

Al/Ni reactive coatings are fabricated via electrochemical deposition (ECD) at different applied voltages for reactive bonding application. AlCl3:1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) (1.5:1) ionic liquid electrolyte is used as source of Al, whereas Ni is in the bath and incorporated into final coatings as nanoparticles (NPs). Scanning electron microscopy and Auger electron spectroscopy reveal a homogeneous Ni particle dispersion, as well as a high amount of particle incorporation into the Al matrix. A maximum of 37 wt% (22 at%) of Ni is detected via atomic absorption spectroscopy in the Al/Ni coating deposited at −0.1 V from an electrolyte containing 20 g L−1 of Ni NPs. Previous literature show that for bonding application an ideal concentration is around 50 at% of Ni and 50 at% Al. However, this is achieved using high vacuum, time-consuming processes, and costly techniques like evaporation and magnetron sputtering. The ECD used in this work represents a more cost-efficient approach which is not reported up to date for the aforementioned application. The reactivity of the coatings is confirmed by Differential scanning calorimetry. Herein, an exothermic reaction is detected upon the mixing of Al and Ni occurring at high temperatures.



https://doi.org/10.1002/adem.202302217
Hannappel, Thomas; Shekarabi, Sahar; Jaegermann, Wolfram; Runge, Erich; Hofmann, Jan Philipp; Krol, Roel van de; May, Matthias M.; Paszuk, Agnieszka; Hess, Franziska; Bergmann, Arno; Bund, Andreas; Cierpka, Christian; Dreßler, Christian; Dionigi, Fabio; Friedrich, Dennis; Favaro, Marco; Krischok, Stefan; Kurniawan, Mario; Lüdge, Kathy; Lei, Yong; Roldán Cuenya, Beatriz; Schaaf, Peter; Schmidt-Grund, Rüdiger; Schmidt, W. Gero; Strasser, Peter; Unger, Eva; Montoya, Manuel Vasquez; Wang, Dong; Zhang, Hongbin
Integration of multi-junction absorbers and catalysts for efficient solar-driven artificial leaf structures : a physical and materials science perspective. - In: Solar RRL, ISSN 2367-198X, Bd. 0 (2024), 0, S. 1-88

Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar-driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge-based design rules, and scalable engineering strategies. Here, we will discuss competitive artificial leaf devices for water splitting, focusing on multi-absorber structures to achieve solar-to-hydrogen conversion efficiencies exceeding 15%. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10-20 mA cm^-2 must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so-called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Here, we discuss and report on corresponding research efforts to produce green hydrogen with unassisted solar-driven (photo-)electrochemical devices. This article is protected by copyright. All rights reserved.



https://doi.org/10.1002/solr.202301047
Shen, Fengxia; Wu, Shuai; Zhao, Pengchong; Li, Yunfei; Miao, Shipeng; Liu, Jianxiong; Ostheimer, David; Hannappel, Thomas; Chen, Tianyou; Shi, Jin
Bipolar membrane Electrolyzer for CO2 electro-reduction to CO in organic electrolyte with NaClO produced as byproduct. - In: Electrochimica acta, ISSN 1873-3859, Bd. 483 (2024), 144056, S. 1-8

A novel electrolyzer has been proposed for CO2 reduction to CO, concurrently generating NaClO as a byproduct at the anode. The cell is divided into two compartments by a bipolar membrane, which plays a pivotal role in the dissociation of H2O into H^+ and OH^−. In the cathode compartment, CO2 is reduced to CO within a neutral organic solution. Simultaneously, in the anode compartment, Cl^− undergoes oxidation to form ClO^− within a basic aqueous solution. The electrolyzer remains stable during 10 h of electrolysis, and the current density reaches 76.35 mA cm^−2 at a potential of -2.4 V (vs SHE), with the Faradaic efficiency of CO formation stable at 93 %. By increasing the product values, CO2 electro-reduction technology can be promoted to industrial applications.



https://doi.org/10.1016/j.electacta.2024.144056