Publications at the Department of Mathematics and Natural Sciences from 2019

Results: 897
Created on: Sun, 28 Apr 2024 16:37:13 +0200 in 0.0560 sec


Visaveliya, Nikunjkumar R.; Köhler, Michael
Emerging structural and interfacial features of particulate polymers at the nanoscale. - In: Langmuir, ISSN 1520-5827, Bd. 36 (2020), 44, S. 13125-13143

Particulate polymers at the nanoscale are exceedingly promising for diversified functional applications ranging from biomedical and energy to sensing, labeling, and catalysis. Tailored structural features (i.e., size, shape, morphology, internal softness, interior cross-linking, etc.) determine polymer nanoparticles' impact on the cargo loading capacity and controlled/sustained release, possibility of endocytosis, degradability, and photostability. The designed interfacial features, however (i.e., stimuli-responsive surfaces, wrinkling, surface porosity, shell-layer swellability, layer-by-layer surface functionalization, surface charge, etc.), regulate nanoparticles interfacial interactions, controlled assembly, movement and collision, and compatibility with the surroundings (e.g., solvent and biological environments). These features define nanoparticles' overall properties/functions on the basis of homogeneity, stability, interfacial tension, and minimization of the surface energy barrier. Lowering of the resultant outcomes is directly influenced by inhomogeneity in the structural and interfacial design through the structure-function relationship. Therefore, a key requirement is to produce well-defined polymer nanoparticles with controlled characteristics. Polymers are amorphous, flexible, and soft, and hence controlling their structural/interfacial features through the single-step process is a challenge. The microfluidics reaction strategy is very promising because of its wide range of advantages such as efficient reactant mixing and fast phase transfer. Overall, this feature article highlights the state-of-the-art synthetic features of polymer nanoparticles with perspectives on their advanced applications.



https://doi.org/10.1021/acs.langmuir.0c02566
Huo, Dexian; Chen, Bin; Meng, Guowen; Huang, Zhulin; Li, Mingtao; Lei, Yong
Ag-nanoparticlesbacterial nanocellulose as a 3D flexible and robust surface-enhanced raman scattering substrate. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 12 (2020), 45, S. 50713-50720

We present a well-designed, low-cost, and simple synthetic approach to realizing the hybrid composites of Ag nanoparticle-decorated bacterial nanocellulose (denoted as Ag-NPsBNC) as a three-dimensional (3D) flexible surface-enhanced Raman scattering (SERS) substrate with ultrahigh SERS sensitivity, excellent signal reproducibility, and stability. The homogeneous Ag-NPs with high density were in situ grown on the networked BNC fibers by the controlled silver mirror reaction and volume shrinkage treatment, which created uniformly distributed SERS "hot spots" in the 3D networked hybrid substrate. Attributed to these unique 3D hot spots, the as-presented Ag-NPs@BNC substrates exhibited ultrahigh sensitivity and good spectral reproducibility. Moreover, the hydrophilic BNC exhibits good permeability and adsorption performances, which could capture the target molecules in the highly active hot spot areas to further improve the SERS sensitivity. As a result, not only dye molecules (rhodamine 6G) but also toxic organic pollutants such as 2-naphthalenethiol and thiram have been detected using the hybrid substrates as SERS substrates, with sensitivities of 1.6 × 10-8 and 3.8 × 10-9 M, respectively. The good linear response of the intensity and the logarithmic concentration revealed promising applications in the rapid and quantitative detection of toxic organic pollutants. Besides, this self-supported Ag-NPs@BNC substrate demonstrated good stability and flexibility for varied detection conditions. Therefore, the 3D networked, flexible, ultrasensitive, and stable Ag-NPs@BNC substrate shows potential as a versatile SERS substrate in the rapid identification of various organic molecules.



https://doi.org/10.1021/acsami.0c13828
Romanyuk, Oleksandr; Supplie, Oliver; Paszuk, Agnieszka; Stoeckmann, Jan Philipp; Wilks, Regan George; Bombsch, Jakob; Hartmann, Claudia; Garcia Diez, Raul; Ueda, Shigenori; Bartoš, Igor; Gordeev, Ivan; Houdkova, Jana; Kleinschmidt, Peter; Bär, Marcus; Jiříček, Petr; Hannappel, Thomas
Hard X-ray photoelectron spectroscopy study of core level shifts at buried GaP/Si(001) interfaces. - In: Surface and interface analysis, ISSN 1096-9918, Bd. 52 (2020), 12, S. 933-938

We present a study of buried GaP/Si(001) heterointerfaces by hard X-ray photoelectron spectroscopy. Well-defined thin (4-50 nm) GaP films were grown on Si(001) substrates with 2˚ miscut orientations by metalorganic vapor phase epitaxy. Core level photoelectron intensities and valence band spectra were measured on heterostructures as well as on the corresponding reference (bulk) substrates. Detailed analysis of core level peaks revealed line broadening and energetic shifts. Valence band offsets were derived for the films with different thickness. Based on the observed variation of the valence band offsets with the GaP film thickness and on the experimental evidence of line broadening, the existence of charge displacement at the GaP/Si(001) interface is suggested.



https://doi.org/10.1002/sia.6829
Kreismann, Jakob; Hentschel, Martina
Spin-orbit interaction of light in three-dimensional microcavities. - In: Physical review, ISSN 2469-9934, Bd. 102 (2020), 4, 043524

We investigate the spin-orbit coupling of light in three-dimensional cylindrical and tubelike whispering gallery mode resonators. We show that its origin is the transverse confinement of light in the resonator walls, even in the absence of inhomogeneities or anisotropies. The spin-orbit interaction results in elliptical far-field polarization (spin) states and causes spatial separation of polarization handedness in the far field. The ellipticity and spatial separation are enhanced for whispering gallery modes with higher excitation numbers along the resonator height. We analyze the asymmetry of the ellipticity and the tilt of the polarization orientation in the far field of conelike microcavities. Furthermore, we find a direct relationship between the tilt of the polarization orientation in the far field and the local inclination of the resonator wall. Our findings are based on finite-difference time-domain simulations and are supported by three-dimensional diffraction theory.



https://doi.org/10.1103/PhysRevA.102.043524
Zhang, Chenglin; Zhao, Huaping; Lei, Yong
Recent research progress of anode materials for potassium-ion batteries. - In: Energy & Environmental Materials, ISSN 2575-0356, Bd. 3 (2020), 2, S. 105-120

The next-generation smart grid for the storage and delivery of renewable energy urgently needs to develop a low-cost and rechargeable energy storage technology beyond lithium-ion batteries (LIBs). Owing to the abundance of potassium (K) resources and the similar electrochemical performance to that of LIBs, potassium-ion batteries (PIBs) have been attracted considerable interest in recent years, and significant progress has been achieved concerning the discovery of high-performance electrode materials for PIBs. This review especially summarizes the latest research progress regarding anode materials for PIBs, including carbon materials, organic materials, alloys, metal-based compounds, and other new types of compounds. The reversible K-ion storage principle and the electrochemical performance (i.e., capacity, potential, rate capability, and cyclability) of these developed anode materials are summarized. Furthermore, the challenges and the corresponding effective strategies to enhance the battery performance of the anode materials are highlighted. Finally, prospects of the future development of high-performance anode materials for PIBs are discussed.



https://doi.org/10.1002/eem2.12059
Hurmach, Vasyl V.; Khrapatiy, Sergeii V.; Zavodovskyi, D. O.; Prylutskyy, Yuriy I.; Täuscher, Eric; Ritter, Uwe
Modeling of single-walled carbon nanotube binding to nitric oxide synthase and guanylate cyclase molecular structures. - In: Neurophysiology, ISSN 1573-9007, Bd. 52 (2020), 2, S. 110-115

Previously, we have demonstrated that water dispersible single-walled carbon nanotubes (SWCNTs) may be used in low therapeutic doses in antihypertensive therapy as promising agents capable of activating constitutive nitric oxide synthase (NOS) in spontaneously hypertensive rats, thus increasing the NO production in central and peripheral elements of the cardiovascular system [1]. Here we confirm this effect by docking and molecular dynamics simulations, clearly showing that SWCNTs may interact with NOS and guanylate cyclase molecular structures.



https://doi.org/10.1007/s11062-020-09859-0
Shapoval, Lyudmila M.; Dmytrenko, Oksana V.; Sagach, Vadim F.; Prylutska, Svitlana V.; Khrapatiy, Sergeii V.; Zavodovskyi, D. O.; Prylutskyy, Yuriy I.; Tsierkezos, Nikos; Ritter, Uwe
Systemic administrations of water-dispersible single-walled carbon nanotubes: activation of NOS in spontaneously hypertensive rats. - In: Neurophysiology, ISSN 1573-9007, Bd. 52 (2020), 2, S. 101-109

Priority data have been obtained on the effects of repeated systemic administrations of water-dispersible single-walled carbon nanotubes (SWCNTs) to spontaneously hypertensive rats with respect to constitutive NO-synthase (cNOS). As is known, NO is an inhibitory transmitter in the cardiovascular system. It was found that the systemic (i.p., subcutaneous, and i.m.) introductions of SWCNTs during two weeks resulted in considerable elevations of the NO2- level (a marker of NO bioavailability) in the blood of experimental hypertensive animals. Thus, SWCNTs may be used in the future for antihypertensive therapy as a novel agent capable of activating cNOS and, thus, increasing the NO production in central and peripheral elements of the cardiovascular system.



https://doi.org/10.1007/s11062-020-09858-1
Xu, Rui; Wen, Liaoyong; Wang, Zhijie; Zhao, Huaping; Mu, Guannan; Zeng, Zhiqiang; Zhou, Min; Bohm, Sebastian; Zhang, Huanming; Wu, Yuhan; Runge, Erich; Lei, Yong
Programmable multiple plasmonic resonances of nanoparticle superlattice for enhancing photoelectrochemical activity. - In: Advanced functional materials, ISSN 1616-3028, Bd. 30 (2020), 48, 2005170, insges. 10 S.

https://doi.org/10.1002/adfm.202005170
Janse van Rensburg, Dawie B.; Van Straaten, Madelein; Theron, Frieda; Trunk, Carsten
Square roots of H-nonnegative matrices. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2020. - 1 Online-Ressource (24 Seiten). - (Preprint ; M20,01)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020200426
Hurmach, Yevheniia; Rudyk, Mariia; Prylutska, Svitlana; Hurmach, Vasyl; Prylutskyy, Yuriy I.; Ritter, Uwe; Scharff, Peter; Skivka, Larysa
C60 fullerene governs doxorubicin effect on metabolic profile of rat microglial cells in vitro. - In: Molecular pharmaceutics, ISSN 1543-8392, Bd. 17 (2020), 9, S. 3622-3632
Im Titel ist "60" tiefgestellt

Background: C60 fullerenes and their derivatives are actively investigated for the use in neuroscience. Applications of these nanoscale materials require the examination of their interaction with different neural cells, especially with microglia, because these cells, like other tissue resident phagocytes, are the earliest and most sensitive responders to nanoparticles. The aim of this study was to investigate the effect of C60 fullerene and its nanocomplex with doxorubicin (Dox) on the metabolic profile of brain-resident phagocytes - microglia - in vitro. Methods: Resting microglial cells from adult male Wistar rats were used in experiments. Potential C60 fullerene targets in microglial cells were studied by computer simulation. Microglia oxidative metabolism and phagocytic activity were examined by flow cytometry. Griess reaction and arginase activity colorimetric assay were used to explore arginine metabolism. Results: C60 fullerene when used alone did not influence microglia oxidative metabolism and phagocytic activity but shifted arginine metabolism toward the decrease of NO generation. Complexation of C60 fullerene with Dox (C60-Dox) potentiated the ability of the latter to stimulate NO generation. Conclusion: The capability of C60 fullerenes used alone to cause anti-inflammatory shift of microglia arginine metabolism makes them a promising agent for the correction of neuroinflammatory processes involved in neurodegeneration. The potentiating action of C60 fullerene on the immunomodulatory effect of Dox allows us to consider the C60 molecule as an attractive vehicle for this antitumor agent.



https://doi.org/10.1021/acs.molpharmaceut.0c00691