Scientific publications without theses

Results: 827
Created on: Tue, 07 May 2024 23:10:12 +0200 in 0.0852 sec


Milojeviâc, Andrija; Linß, Sebastian; Handroos, Heikki
Soft robotic compliant two-finger gripper mechanism for adaptive and gentle food handling. - In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), (2021), S. 163-168

In the field of soft robotics there is still a great need for a versatile, simple, and affordable gripper with a high level of adaptability to unknown objects of different sizes, shapes, and stiffness. Most of the existing soft robotic grippers are complex solutions realized with fluid-mechanically driven actuators, active smart materials, cable-driven actuation, and different form-closure principles. However, soft grippers based on compliant mechanisms are rarely introduced and explored so far. Therefore, we present a novel compliant two-finger gripper mechanism for adaptive and gentle gripping, especially of soft and easily squeezable objects like fruits, vegetables, sweets, and sushi. The structurally inherent adaptability is achieved using an optimally synthesized compliant mechanism in combination with a conventional linear actuator. Furthermore, the two-finger gripper passively realizes pinch (parallel) or/and encompass (power) grasping. It is shown by FEM simulations and confirmed by prototype tests that the developed gripper realizes both pinch and encompass grasping with high adaptability. A special advantage of the gripper is the possibility to achieve gentle food-handling of objects with comparable weight independent of the object shape, size, and position without the need for sensors. Moreover, the precise, safe, and fast manipulation of very delicate objects is exemplarily demonstrated for different sushi pieces using the gripper mechanism with an industrial robotic arm.



https://doi.org/10.1109/RoboSoft51838.2021.9479337
Böhm, Valter; Schorr, Philipp; Schale, Florian; Kaufhold, Tobias; Zentner, Lena; Zimmermann, Klaus
Worm-like mobile robot based on a tensegrity structure. - In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), (2021), S. 358-363

This work presents a novel concept to develop mobile robots enabling crawling locomotion in tubular environment. Chain-like systems are designed by serial cascading a uniform tensegrity module. Inspired by the movement of worms in nature, an undulating shape change of the system is targeted to generate locomotion. The shape changeability of an exemplary tensegrity module due to internal actuation is examined in simulations and experiments. A prototype consisting of these tensegrity modules is manufactured and the locomotion principle is verified in experiments. Comparing to existing prototypes this approach enables an enhanced compliance due to the modular assembly of tensegrity structures.



https://doi.org/10.1109/RoboSoft51838.2021.9479193
Gräser, Philipp; Linß, Sebastian; Harfensteller, Felix; Torres, Mario; Zentner, Lena; Theska, René
High-precision and large-stroke XY micropositioning stage based on serially arranged compliant mechanisms with flexure hinges. - In: Precision engineering, Bd. 72 (2021), S. 469-479

Compliant mechanisms are state of the art in micropositioning stages due to their many beneficial features. However, their design usually compromises between motion range, motion accuracy and design space, while mechanisms with distributed compliance are mostly applied. The further use of flexure hinges with common notch shapes strongly limits the stroke in existing high-precision motion systems. Therefore, this paper presents a high-precision compliant XY micropositioning stage with flexure hinges capable of realizing a motion range of ± 10 mm along both axes. The stage is based on a novel plane-guidance mechanism, which is optimized to realize a precise rectilinear motion of the coupler link while keeping the rotation angles of all hinges below 5˚. The XY motion is then achieved by coupling two of these mechanisms in a serial arrangement. Next, the synthesis of the monolithic XY stage is realized by replacing all revolute joints of the rigid-body model with flexure hinges using optimized power function notch shapes. Emphasis is also placed on the embodiment design of the stage and the actuator integration to minimize possible error sources. Finally, the quasi-static behavior of the compliant stage is characterized by a simulation with a 3D FEM model and by an experimental investigation of a prototype. According to the results, the developed compliant XY micropositioning stage achieves a maximum positioning deviation of less than 10 [my]m in both axes and a yaw error of less than 100 [my]rad over a working range of 20 mm × 20 mm with a comparably compact design of the compliant mechanism of 224 mm × 254 mm.



https://doi.org/10.1016/j.precisioneng.2021.02.001
Henning, Stefan; Zentner, Lena
Analysis of planar compliant mechanisms based on non-linear analytical modeling including shear and lateral contraction. - In: Mechanism and machine theory, Bd. 164 (2021), 104397, insges. 23 S.

Compliant mechanisms are commonly used in precision engineering while analyzing their deflection is particularly challenging. Often, FEM simulations are chosen in an iterative process. Analytical approaches that consider pure bending, shear or other effects are usually limited to the mechanism as a system. However, certain configurations comprise compliant elements with different aspect ratios. The aim of this paper is to integrate the theories of shear and lateral contraction into a unified form with the existing theory of bending for large deflections and make them applicable individually for specific sections of continuous compliant mechanisms. Recommendations are made as to when which theory should be used. Building on that, a comprehensive tool for analyzing compliant mechanisms developed in Python is introduced. The tool offers the possibility to create arbitrary compliant mechanisms including branched links and various boundary conditions. A tool for parametric studies allows to optimize the given geometry for realizing a specific motion task. Further, FEM and measurement results correlate well with the application results. The presented user interface can be beneficial for the accelerated analysis and synthesis of compliant mechanisms.



https://doi.org/10.1016/j.mechmachtheory.2021.104397
Chavez, Jhohan;
Theoretical and experimental investigations of magnetic hybrid materials and their application in soft gripping. - Ilmenau, 2021. - xix, 193 Seiten
Technische Universität Ilmenau, Dissertation 2021

Soft Robotics ist ein aktuelles Forschungsfeld. Die Anwendung mechanisch nachgiebiger Materialien in technischen Applikationen wird aktuell intensiv vorangetrieben. Intelligente nachgiebige Materialien, beispielsweise Materialien, die ihre mechanischen Eigenschaften reversibel ändern können, werden in immer mehr technischen Anwendungen eingesetzt. Vordergründig geschieht dies mit den Zielen der Funktionserweiterung und der individuellen reversiblen Anpassbarkeit an veränderte Umgebungsbedingungen. Magnetorheologische Elastomere sind intelligente nachgiebige Hybridmaterialien, bestehend aus einer Elastomermatrix, die mit ferromagnetischen Partikeln gefüllt ist. In Abhängigkeit von der beabsichtigten Verwendung dieser Hybridmaterialien werden weich- oder hartmagnetische Partikel eingesetzt. Diese Materialien besitzen die besondere Fähigkeit, ihre mechanischen Eigenschaften zu ändern, wenn auf sie Magnetfelder einwirken. Diese vorteilhaft nutzbare Eigenschaft macht ihren Einsatz in zahlreichen technischen Anwendungen dort effizient, in welchen Strukturen mit reversibel veränderbarer mechanischer Nachgiebigkeit eingesetzt werden sollen. Bedingt durch ihre vorteilhaften Eigenschaften werden diese Materialien aktuell intensiv erforscht. Im Fokus der meisten Forschungsarbeiten auf diesem Gebiet stehen dabei die mechanische und magnetische Charakterisierung der Materialeigenschaften, sowie die Erarbeitung von Materialmodellen, die eine Beschreibung des magneto-mechanischen Verhaltens dieser Materialien mit hoher Genauigkeit erlauben. Viele Effekte im Verhalten dieser Materialien sind aktuell noch nicht tiefgründig untersucht bzw. verstanden worden. In dieser Arbeit werden diese Hybridmaterialien aus ingenieurtechnischer Sicht betrachtet. Die Untersuchungen an diesen Materialien werden auf potentielle technische Applikationen fokussiert. Dabei wird der Schwerpunkt auf den magnetfeldinduzierten elasto-plastischen Effekt dieser Materialien, sowie auf die Nutzung dieses Effektes in einer exemplarischen technischen Anwendung, in End-Effektoren für die Greifertechnik, gelegt. In der Arbeit werden magnetorheologische Elastomere untersucht, die weichmagnetische Partikel in verschiedenen Volumenkonzentrationen enthalten. Im ersten Teil der Arbeit werden schwerpunktmäßig experimentelle Untersuchungen durchgeführt, um geeignete Material- und Zusammensetzungsdesigns für das Hybridmaterial im Hinblick auf die gewünschte Anwendung definieren zu können. Mit Hilfe der anschließenden theoretischen Untersuchungen wird die Quantifizierung der magnetischen und mechanischen Eigenschaften dieser Materialien auf der Makro-Skala erreicht. Aufbauend auf diese Untersuchungen wird eine Methodik erarbeitet, die die Beschreibung des magneto-mechanischen Verhaltens dieser Materialien mittels Anwendung der Finite-Elemente-Methode ermöglicht. Die exemplarische Verwendung dieser Materialien als End-Effektor beim Greifen von empfindlichen Objekten impliziert die formschlüssige Umhüllung der zu greifenden Gegenstände. Mit Magnetfeldern werden die Effekte der Nachgiebigkeitsänderung und der magnetfeldinduzierten Plastizität in diesen Hybridmaterialien stimuliert. Dadurch wird eine Formanpassung und damit formschlüssiges Greifen ermöglicht. In der Arbeit wird ein End-Effektor-Prototyp hergestellt und getestet, um die vorteilhafte Anwendbarkeit magnetorheologischer Elastomere in der Soft Robotics aufzuzeigen.



Sindersberger, Dirk; Prem, Nina; Monkman, Gareth; Zimmermann, Klaus
Self-sensing electroadhesive polymer gripper with magnetically controllable surface geometry. - In: Actuator 2021, (2021), S. 318-320

Schorr, Philipp; Zentner, Lena; Zimmermann, Klaus; Böhm, Valter
Jumping locomotion system based on a multistable tensegrity structure. - In: Mechanical systems and signal processing, ISSN 1096-1216, Bd. 152 (2021), 107384

All known locomotion principles are limited respective to environmental conditions. Often, the occurrence of obstacles or gaps means the break-off for the operating motion systems. For such circumstances, a controllable jumping locomotion is required to cross these barriers. However, this locomotion demands sophisticated requirements to the actuation. The abrupt actuation is commonly realized by high dynamic actuators or complex mechanisms. In this work, a simple solution utilizing the multistability of a compliant tensegrity structure is described. Therefore, a two-dimensional tensegrity structure featuring four stable equilibria is considered. Based on bifurcation analyses a feasible actuation to control the current equilibrium configuration is derived. Changing between selected equilibrium states enables a great difference in potential energy, which yields a jumping motion of the structure. Based on numerical simulations a suitable actuation strategy is chosen to overcome obstacle and steps by jumping forward or backward, respectively. The theoretical approach is examined experimentally with a prototype of the multistable tensegrity structure.



https://doi.org/10.1016/j.ymssp.2020.107384
Schorr, Philipp; Chavez, Jhohan; Zentner, Lena; Böhm, Valter
Reconfiguration of planar quadrilateral linkages utilizing the tensegrity principle. - In: Mechanism and machine theory, Bd. 156 (2021), 104172

The development of reconfigurable planar four-bar linkages by applying the tensegrity principle is considered. Conventional quadrilateral linkages enable two operation modes differing in the kinematic behavior. However, a change between these states is not possible due to the geometric constraints. To enable a reconfiguration between the different modes one-sided limited nonholonomic constraints are introduced in this work. This issue is realized by applying ropes that cannot resist compression. However, to guarantee an appropriate load case in operation a prestress within the mechanism is required. Hence, the linkage is extended to a tensegrity-based mechanism. The structural dynamics are derived using the Lagrange formalism and the structural behavior is evaluated using numerical simulations. Furthermore, a prototype of an exemplary tensegrity-based mechanism is manufactured and experiments regarding the mechanical properties, in particular the reconfiguration, are performed. The results suggest the potential benefit of applying the tensegrity principle within conventional planar four-bar linkages.



https://doi.org/10.1016/j.mechmachtheory.2020.104172
Chavez, Jhohan; Ziolkowski, Marek; Schorr, Philipp; Spieß, Lothar; Böhm, Valter; Zimmermann, Klaus
A method to approach constant isotropic permeabilities and demagnetization factors of magneto-rheological elastomers. - In: Journal of magnetism and magnetic materials, ISSN 1873-4766, Bd. 527 (2021), 167742

The use of non-conventional materials is nowadays of much interest in scientific community. Magneto-rheological elastomers are hybrid materials, which in presence of magnetic fields state a change in their mechanical properties. They are composed by an elastomeric matrix with embedded magnetic particles. One of the most attractive features of these materials is that as soon as the magnetic field is removed from the material, the original mechanical properties are completely recovered, with negligible differences in comparison to the original state. This paper focuses on the study of magnetic characteristics of these smart materials, such as relative permeability and demagnetizing factors, for samples with different volume concentration of ferromagnetic particles.



https://doi.org/10.1016/j.jmmm.2021.167742
Milojeviâc, Andrija; Linß, Sebastian; âCojbašiâc, Žarko; Handroos, Heikki
A novel simple, adaptive, and versatile soft-robotic compliant two-finger gripper with an inherently gentle touch. - In: Journal of mechanisms and robotics, ISSN 1942-4310, Bd. 13 (2021), 1, S. 011015-1-11015-14

https://doi.org/10.1115/1.4048752

   

... until 2022 from the Technical Mechanics Group

Results: 519
Created on: Tue, 07 May 2024 23:08:42 +0200 in 0.0663 sec


Merker, Lukas; Will, Christoph; Steigenberger, Joachim; Behn, Carsten
Mathematical models of bio-inspired rotatable sensors with elasticities for object scanning. - In: Proceedings in applied mathematics and mechanics, ISSN 1617-7061, Bd. 18 (2018), 1, e201800264, insges. 2 S.

https://doi.org/10.1002/pamm.201800264
Sumi, Susanne;
Form- und Parameterfindung von multistabilen Tensegrity-Strukturen mittels Optimierungsalgorithmen und Anwendungen in der Greifertechnik. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (viii, 227 Seiten)
Technische Universität Ilmenau, Dissertation 2018

Der Gegenstand der Arbeit sind Tensegrity-Strukturen mit mehreren stabilen Gleichgewichtskonfigurationen, sogenannte multistabile Tensegrity-Strukturen. Im Vordergrund der Arbeit steht die Entwicklung von Algorithmen, mit denen solche Strukturen entworfen, untersucht und gezielt ausgelegt werden können. Dafür werden Möglichkeiten zur Bestimmung der Gleichgewichtskonfigurationen von multistabilen Tensegrity-Strukturen betrachtet. Des Weiteren wird untersucht, wie Tensegrity-Strukturen so ausgelegt werden können, dass sie vorgegebene Eigenschaften aufweisen. Dazu werden Kenngrößen zur Charakterisierung dieser Eigenschaften definiert. Für beide Aufgabenstellungen werden Optimierungsprobleme hergeleitet. Zur Lösung dieser Optimierungsprobleme werden Algorithmen entworfen, getestet und analysiert. Aufbauend auf diesen theoretischen Untersuchungen liegt ein weiterer Schwerpunkt dieser Arbeit in der Betrachtung der Einsatzmöglichkeiten von multistabilen Tensegrity-Strukturen in der Greifertechnik. Es werden verschiedene Konzepte für die Entwicklung von Greifern aus diesen Strukturen diskutiert. Zu ausgewählten Konzepten erfolgen weiterführende Betrachtungen, unter anderem durch Einbeziehung dynamischer Analysen. Neben theoretischen Untersuchungen dieser Greifer werden die wichtigsten Erkenntnisse experimentell an Funktionsmustern überprüft und potentielle Einsatzgebiete werden aufgezeigt.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2018000245
Otterbach, Jan Marc; Gerlach, Erik; Ziolkowski, Marek; Brauer, Hartmut; Schmidt, Reinhard
Portable system for motion induced eddy current testing. - In: Sensors and Measuring Systems, (2018), S. 300-303

https://ieeexplore.ieee.org/document/8436178
Merker, Lukas; Scharff, Moritz; Zimmermann, Klaus; Behn, Carsten
Signal tuning of observables at the support of a vibrissa-like tactile sensor in different scanning scenarios. - In: High tech human touch, ISBN 978-1-5386-8183-1, (2018), S. 1138-1143

https://doi.org/10.1109/BIOROB.2018.8487961
Schorr, Philipp; Böhm, Valter; Zentner, Lena; Zimmermann, Klaus
Motion characteristics of a vibration driven mobile tensegrity structure with multiple stable equilibrium states. - In: Journal of sound and vibration, ISSN 0022-460X, Bd. 437 (2018), S. 198-208

https://doi.org/10.1016/j.jsv.2018.09.019
Schorr, Philipp; Böhm, Valter; Zentner, Lena; Zimmermann, Klaus
Dynamical investigation of crawling motion system based on a multistable tensegrity structure. - In: ICINCO 2018, (2018), S. 122-130

The basic idea of this article is the utilization of the multistable character of a compliant tensegrity structure to control the direction of motion of a crawling motion system. A crawling motion system basing on a two-dimensional tensegrity structure with multiple stable equilibrium states is considered. This system is in contact with a horizontal plane due to gravity. For a selected harmonic actuation of the system small oscillations around the given equilibrium state of the tensegrity structure occur and the corresponding uniaxial motion of the system is evaluated. A change of the equilibrium state of the tensegrity structure yields to novel configuration of the entire system. Moreover, the motion behavior of the novel configuration is totally different although the actuation strategy is not varied. In particular, the direction of motion changes. Therefore, this approach enables a uniaxial bidirectional crawling motion with a controllable direction of motion using only one actuato r with a selected excitation frequency.



Behn, Carsten; Kräml, Jonas
Gait transitions in artificial non-standard snake-like locomotion systems using adaptive control. - In: Dynamical Systems in Applications, (2018), S. 1-12

This chapter contributes to the modeling, analysis and control of terrestrial artificial locomotion systems. Inspired by previous models, we set up an unconventional model for a snake-like locomotion systems in form of a chain of visco-elastically interconnected mass points in a plane with passive joints, but - in contrast to literature - active links (time-varying link-length) and rotatable skids to change the movement direction and to avoid obstacles. We investigate this model in a dynamical way and focus on controlling these link lengths to achieve a global movement, steered by the skids. From dynamics, the actuator forces have to adjust the prescribed link length for the locomotion. Since it is impossible to determine the necessary actuator forces a-priori, we apply an adaptive lambda-tracking controller to enable the system to adjust these force outputs on-line on its own. Prescribed motion patterns, i.e. specific gaits, are required to guarantee a controlled movement that differ in the number of resting mass points, the load of actuators and spikes, and the lateral forces of the skids. In contrast to literature, the investigated system of n = 10 mass points exhibit a large variety of possible gaits. To determine the most advantageous gaits, numerical investigations are performed and a weighting function offers a decision of best possible gaits. Using these gaits, a gait transition algorithm, which autonomously changes velocity and number of resting mass points depending on the spike, actuator and lateral skid force load, is presented and tested in numerical simulations.



https://doi.org/10.1007/978-3-319-96601-4_1
Sumi, Susanne; Schorr, Philipp; Böhm, Valter; Zimmermann, Klaus
Dynamic analysis of a compliant tensegrity structure for the use in a gripper application. - In: Dynamical systems in theoretical perspective, (2018), S. 323-334

The use of compliant tensegrity structures in robotic applications offers several advantageous properties. In this work the dynamic behaviour of a planar tensegrity structure with multiple static equilibrium configurations is analysed, with respect to its further use in a two-finger-gripper application. In this application, two equilibrium configurations of the structure correspond to the opened and closed states of the gripper. The transition between these equilibrium configurations, caused by a proper selected actuation method, is essentially dependent on the actuation parameters and on the system parameters. To study the behaviour of the dynamic system and possible actuation methods, the nonlinear equations of motion are derived and transient dynamic analyses are performed. The movement behaviour is analysed in relation to the prestress of the structure and actuation parameters.



https://doi.org/10.1007/978-3-319-96598-7_26
Scharff, Moritz; Darnieder, Maximilian; Steigenberger, Joachim; Alencastre, Jorge H.; Behn, Carsten
Theoretical investigations on the behavior of artificial sensors for surface texture detection. - In: Dynamical systems in theoretical perspective, (2018), S. 311-321

Animal vibrissae are used as natural inspiration for artificial tactile sensors, e.g., the mystacial vibrissae enable rodents to perform several tasks in using these tactile hairs: object shape determination and surface texture discrimination. Referring to the literature, the Kinetic Signature Hypothesis states that the surface texture detection is a highly dynamic process. It is assumed that the animals gather information about the surface texture out of a spatial, temporal pattern of kinetic events. This process has to be analyzed in detail to develop an artificial tactile sensor with similar functionalities. Hence, we set up a mechanical model for theoretical investigations of the process. This model is analyzed in two different directions using numerical simulations: at first a quasi-static and then a fully dynamic description.



https://doi.org/10.1007/978-3-319-96598-7_25
Prem, Nina; Chavez, Jhohan; Böhm, Valter; Sindersberger, Dirk; Monkman, Gareth J.; Zimmermann, Klaus
Properties of polydimethylsiloxane and magnetoactive polymers with electroconductive particles. - In: Macromolecular chemistry and physics, ISSN 1521-3935, Bd. 219 (2018), 18, S. 1800222, insges. 8 S.

Magnetoactive polymers are intelligent materials whose mechanical and electrical characteristics are reversibly influenced by external magnetic stimuli. They consist of a highly elastic polymer matrix in which magnetically soft and/or hard particles are distributed by means of special fabrication processes. In addition to ferromagnetic particles such as carbonyl iron powder, electrically conductive particles may also be embedded into the polymer matrix. After characterizing a range of compounds, this work focuses on a comparison of the electrical properties and the suitability of various materials for applications, with particular emphasis on integration into 3D and 6D printing processes. 6D printing is based on the selective positioning of particles in a 3D polymer matrix with a further three degrees of freedom for a graduated dispersion of the particles at certain points and in desired directions. The aim is therefore to ensure that the polymers containing electroconductive tracks have the best possible electrical properties, that is, low resistivity but are still capable of being printed. A comparison between the traditionally used compounds containing graphite and carbon black is made for the first time. This latter is found to be greatly superior both in terms of electrical conductivity and applicability to 3D printing and 6D printing.



https://doi.org/10.1002/macp.201800222