Flexures for Kibble balances: minimizing the effects of anelastic relaxation. - In: Metrologia, ISSN 1681-7575, Bd. 61 (2024), 4, 045006, S. 1-18
We studied the anelastic aftereffect of a flexure being used in a Kibble balance, where the flexure is subjected to a large excursion in velocity mode after which a high-precision force comparison is performed. We investigated the effect of a constant and a sinusoidal excursion on the force comparison. We explored theoretically and experimentally a simple erasing procedure, i.e. bending the flexure in the opposite direction for a given amplitude and time. We found that the erasing procedure reduced the time-dependent force by about 30%. The investigation was performed with an analytical model and verified experimentally with our new Kibble balance at the National Institute of Standards and Technology employing flexures made from precipitation-hardened Copper Beryllium alloy C17200. Our experimental determination of the modulus defect of the flexure yields 1.2 x 10^-4. This result is about a factor of two higher than previously reported from experiments. We additionally found a static shift of the flexure’s internal equilibrium after a change in the stress and strain state. These static shifts, although measurable, are small and deemed uncritical for our Kibble balance application at present. During this investigation, we discovered magic flexures that promise to have very little anelastic relaxation. In these magic flexures, the mechanism causing anelastic relaxation is compensated for by properly shaping and loading a flexure with a non-constant cross-section in the region of bending.
https://doi.org/10.1088/1681-7575/ad57cb
Microstructure refinement by a novel friction-based processing on Mg-Zn-Ca alloy. - In: Material forming, ESAFORM 2024, (2024), S. 2031-2040
Insufficient mechanical properties and uncontrollable degradation rates limit the wide application of Mg alloys in bioimplant materials. Microstructure refinement is a common method to improve both the mechanical properties and the corrosion resistance of Mg alloys. In order to efficiently obtain Mg alloys with fine microstructures for potential applications in bioimplant materials, a novel constrained friction processing (CFP) was proposed. In this work, the resulting compression properties of ZX10 alloy obtained by CFP with optimized processing parameter are reported. Additionally, the microstructure evolution during CFP was studied. The results show that during CFP, materials are subjected to high shear strain at the transition zone between the stir zone and thermo-mechanical affected zone, leading to recrystallization with strong local basal fiber shear texture. As the shoulder plunges down, the fraction of recrystallized grain and grain size increase. ZX10 alloy obtained by CFP exhibited higher compressive yield strength by more than 300% and ultimate compressive strength improves by 60%, which indicates the bright prospect of CFP for Mg processing.
https://doi.org/10.21741/9781644903131-224
Maschinen- und Verfahrensentwicklung zum laserunterstützten, großvolumigen Schmelzschichten. - Ilmenau : Universitätsverlag Ilmenau, 2024. - 1 Online-Ressource (XXIV, 152 Seiten). - (Berichte aus dem Institut für Maschinen- und Gerätekonstruktion (IMGK) ; Band 42)
Technische Universität Ilmenau, Dissertation 2024
In den vergangenen Jahren hat sich im Bereich der additiven Fertigung auch das großvolumige Schmelzschichten kontinuierlich weiterentwickelt. Diese Technologie zeichnet sich durch leistungsfähige Extrudiersysteme mit hohen Austragsraten (>1,5 kg/h) und verhältnismäßig großen Düsendurchmessern (3 - 15 mm) aus. Obwohl das auf Granulat basierende Verfahren ein deutlich größeres Anwendungsspektrum hinsichtlich zu verarbeitender Kunststoffe bietet und zudem deutlich reduzierte Fertigungszeiten sowie die Herstellung wesentlich größerer Komponenten (>2 m³) ermöglicht, bringt es gleichzeitig neue Herausforderungen hinsichtlich der Herstellung von Bauteilen mit verbesserten mechanischen Eigenschaften mit sich. Besonders der im Vergleich zum Filamentverfahren deutlich größere Düsendurchmesser und die daraus resultierende Stranggeometrie führen zu einer Skalierung des für die additive Materialextrusion charakteristischen Aufbaus der Bauteile. Dadurch treten technologiebedingte Merkmale (bspw. Treppenstufeneffekt, Hohlräume, etc.) deutlich prägnanter zum Vorschein. Die generierten Bauteile besitzen ein orthotropes Verhalten. Die vorliegende Arbeit vermittelt ein umfassendes Prozessverständnis über das großvolumige Schmelzschichten und beschreibt die Entwicklung einer richtungsvariablen Lasertemperiereinheit, um den additiven Prozess und die Lasermaterialbearbeitung zu kombinieren. Im Mittelpunkt der Untersuchungen stehen dabei die Werkstoffe PMMA (Polymethylmethacrylat) und SAN (Styrol-Acrylnitril). Die Entwicklung eines umfangreichen Prozessmodells ermöglicht es Bauteile unter Berücksichtigung von Stranggeometrie, Abkühlverhalten sowie Schichtverbindungsqualität reproduzierbar herstellen zu können. Die Untersuchungen zeigen, dass mittels großvolumigem Schmelzschichtens hergestellte Bauteile deutlich bessere Festigkeitseigenschaften als Bauteile filamentbasierter Verfahren aufweisen. Dies äußert sich besonders im Zwischenlagenverbund entlang der Aufbaurichtung. Durch die gezielte Einbringung von Wärmeenergie mittels Infrarotstrahlung in den additiven Herstellungsprozess können sowohl die Kontaktzone zwischen aufeinander geschichteten Strängen vergrößert, als auch verfahrensbedingte Hohlräume um bis zu 57 % reduziert werden. Die Erhöhung der Biegefestigkeit, die Verminderung der Kerbwirkung zwischen den Einzelschichten sowie eine dichtere Strangablage führen zu einer Annäherung an isotrope Bauteileigenschaften. Um den laserbasierten Temperiervorgang entsprechend des Extrusionspfades nachzuführen, wird unter Anwendung des Konstruktiven Entwicklungsprozesses eine richtungsvariable Lasertemperierung entwickelt und erprobt. Dadurch gelingt es den Lasertemperierprozess auch für komplexe Bauteilgeometrien zu optimieren. Die mechanischen Bauteileigenschaften erfahren hierdurch eine deutliche Verbesserung. Besonders im Hinblick auf die laterale Stranganbindung ist, im Vergleich zum großvolumigen Schmelzschichtprozess ohne Verwendung eines Lasersystems, eine Steigerung der Biegefestigkeit um das bis zu 8,6-fache zu verzeichnen.
https://doi.org/10.22032/dbt.59543
On the static performance of aerostatic elements. - In: Precision engineering, Bd. 89 (2024), S. 1-10
Porous aerostatic bearings and seals offer several advantages in precision engineering applications. The static performance of aerostatic elements, i.e., bearings and seals, is investigated both experimentally and numerically. This study presents a method, a test setup, and a measurement of the air gap pressure distribution with high spatial and temporal resolution. This study presents experimental and numerical results of the load capacity, air gap height, static stiffness, air consumption, and air gap pressure distribution. The experimental results are compared to a numerical model based on the modified Reynolds equation. Furthermore, boundaries for the operating parameter space of the investigated seal are determined by stiffness and leakage. The experimental results and the numerical model showed good correlation, providing corroborative evidence for the accuracy of the measurement setup and the feasibility of the pressure measurement method.
https://doi.org/10.1016/j.precisioneng.2024.05.017
Updates on the new Kibble balance at NIST. - In: ASPE Annual Meeting 2023, (2024), S. 194-195
Design and adjustment of weighing cells for vacuum mass comparators. - Ilmenau : Universitätsverlag Ilmenau, 2024. - 1 Online-Ressource (xxiii, 189 Seiten). - (Berichte aus dem Institut für Maschinen- und Gerätekonstruktion (IMGK) ; Band 41)
Technische Universität Ilmenau, Dissertation 2024
Wägezellen auf Basis von nachgiebigen Mechanismen sind von entscheidender Bedeutung in der Massenmetrologie. Die Justierung der mechanischen Eigenschaften bestimmen die messtechnische Leistungsfähigkeit der Instrumente. Die vorliegende Dissertation leistet einen spezifischen Beitrag zu deren weiteren Steigerung. Die Konstruktion und Justierung von nachgiebigen Mechanismen für elektromagnetisch kraftkompensierte Wägezellen in Vakuum-Massekomparatoren werden behandelt. Wichtigster Bestandteil dieser Mechanismen sind ultradünne Festkörpergelenke, deren Modellierung, Fertigung und Messung betrachtet werden. Das mechanische Gesamtsystem wird hinsichtlich der mechanischen Eigenschaften Steifigkeit, Neigungsempfindlichkeit und Ecklastempfindlichkeit modellbasiert und ausgehend von drei Wägezellen-Prototypen experimentell untersucht. Die entwickelte Justiermethode und deren Umsetzung in Justiereinrichtungen erlauben eine zielgerichtete Justierung unter Vakuumbedingungen. Sie sind darauf ausgelegt, die mechanischen Unsicherheitsbeiträge erster Ordnung der Wägezelle zu eliminieren und ermöglichen so eine weitere Verringerung der Messunsicherheit für Massekomparatoren.
https://doi.org/10.22032/dbt.59666
Characterization of a parallel kinematics actuated in situ reference measurement system for 5D-nano-measurement and nano-fabrication applications :
Charakterisierung eines parallelkinematisch aktuierten In-situ-Referenzmesssystems für 5D-Nanomess- und Fabrikationsanwendungen. - In: Technisches Messen, ISSN 2196-7113, Bd. 91 (2024), 2, S. 102-115
Die stetig voranschreitende Entwicklung im Bereich der Fertigung optischer und elektronischer Elemente auf Basis von Nanotechnologien führt seit Jahren zu einer steigenden Nachfrage nach hochpräzisen Nanomess- und Nanofabrikationsmaschinen (The International Roadmap For Devices And Systems, IEEE, 2020; C. Grant Willson and B. J. Roman, “The future of lithography: SEMATECH litho forum 2008,” ASC Nano , vol. 2, no. 7, pp. 1323-1328, 2008). Als technologisch besonders anspruchsvoll hat sich dabei die Fabrikation auf stark geneigten, gekrümmten, asphärischen und freigeformten Oberflächen herausgestellt (R. Schachtschneider, et al., “Interlaboratory comparison measurements of aspheres,” Meas. Sci. Technol. , vol. 29, no. 13pp, p. 055010, 2018). Aufbauend auf den zukunftsweisenden Entwicklungen der Nanopositionier- und Nanomessmaschine 1 (NMM-1) (G. Jäger, E. Manske, T. Hausotte, and J.-J. Büchner, “Nanomessmaschine zur abbefehlerfreien Koordinatenmessung,” tm - Tech. Mess. , vol. 67, nos. 7-8, pp. 319-323, 2000) und der Nanopositionier- und Nanomessmaschine 200 (NPMM-200) (E. Manske, G. Jäger, T. Hausotte, and F. Balzer, “Nanopositioning and Nanomeasuring Machine NPMM-200 - sub-nanometre resolution and highest accuracy in extended macroscopic working areas,” in Euspen’s 17th International Conference , 2017), wird an der Technischen Universität Ilmenau seit mehreren Jahren an Konzepten für NPMM mit erhöhtem Freiheitsgrad geforscht (F. Fern, “Metrologie in fünfachsigen Nanomess- und Nanopositioniermaschinen,” Ph.D. thesis, Technische Universität Ilmenau, 2020; R. Schienbein, “Grundlegende Untersuchungen zum konstruktiven Aufbau von Fünfachs-Nanopositionier- und Nanomessmaschinen,” Ph.D. thesis, Technische Universität Ilmenau, 2020). So besitzt der seit 2020 entwickelte Demonstrator NMM-5D (J. Leinweber, C. Meyer, R. Füßl, R. Theska, and E. Manske, “Ein neuartiges Konzept für 5D Nanopositionier-, Nanomess-, und Nanofabrikationsmaschinen,” tm - Tech. Mess. , vol. 37, nos. 1-10, 2022) neben dem kartesischen Verfahrbereich von 25mm × 25mm × 5mm zusätzlich ein Rotationsvermögen des Tools von 360˚ sowie ein Neigungsvermögen von 50˚. Imfolgenden Artikel wird davon ausgehend die mechanische und metrologische Charakterisierung der parallelkinematisch aktuierten Rotationserweiterung präsentiert. Hierbei konzentrieren sich durchgeführte Untersuchungen primär auf die kinematisch verursachten Abweichungen des Tool Center Point (TCP) sowie die Detektierung dieser Abweichungen mit einem interferometrischen In-situ -Referenzmesssystem. Darüber kann perspektivisch eine geregelte Kompensation der auftretenden TCP-Abweichungen erfolgen.
https://doi.org/10.1515/teme-2023-0109
Direkt abgeformte Betonbauteile für Präzisionsanwendungen im Maschinen- und Gerätebau. - Ilmenau : Universitätsverlag Ilmenau, 2023. - 1 Online-Ressource (XVI, 146 Seiten). - (Berichte aus dem Institut für Maschinen- und Gerätekonstruktion (IMGK) ; Band 40)
Technische Universität Ilmenau, Dissertation 2023
Präzisionssysteme können durch die Verwendung von Werkstoffen mit dem gleichen thermischen Ausdehnungskoeffizienten thermisch stabil realisiert werden. Häufig wird Naturstein für Präzisionsanwendungen verwendet, da dieser sehr fein bearbeitet werden kann, thermisch sowie mechanisch langzeitstabil und korrosionsbeständig ist. Die Gestaltungmöglichkeiten sind jedoch durch die kostspielige und zeitaufwendige Bearbeitung stark eingeschränkt. Ein vielversprechender Ansatz zur Herstellung von Präzisionsbauteilen für die gesamte Maschinenstruktur ist die Verwendung von speziellen selbstverdichtenden Betonen (SCC=Self Compacting Concrete). Mit Beton als Alternativmaterial können vergleichbare mechanische Eigenschaften erzielt und wesentliche Gestaltmerkmale urformend hergestellt werden. Durch die niedrigen Materialkosten amortisieren sich die Werkzeugkosten schon bei kleinen Losgrößen. Teile aus SCC weisen im Herstellungsprozess ein zeit- und klimaabhängiges Schrumpfen und Quellen auf, womit Änderungen in der Bauteilgestalt verbunden sind. Allerdings konnte die Stabilisierungszeit beim Aushärteprozess deutlich verkürzt werden. In einer Langzeitstudie über fast zehn Jahre wurde eine mit Naturstein vergleichbare Formstabilität belegt. Darüber hinaus wurde eine Simulationsmethode entwickelt, um die Formänderung komplexer Geometrien vorherzusagen. Mit diesem Werkzeug kann eine Schalungsgeometrie entwickelt werden, die zu einem Fertigteil führt, welches annähernd der idealen Geometrie entspricht. SCC kann auch als alternatives Material für Teile mit hoher spezifischer Steifigkeit in beweglichen Maschinenstrukturen eingesetzt werden. Um eine mit Stahl- oder Aluminiumleichtbauteilen vergleichbare Zuverlässigkeit zu gewährleisten, muss die Betriebsfestigkeit verbessert werden. Der Einsatz von Stahl– oder Kohlefasern als Bewehrung ist nicht sinnvoll, da diese zu inhomogenem thermischen Verhalten führen. Alternativ kann eine Armierung durch die Aufbringung von organo–funktionellen Beschichtungen mit erhöhter Zugfestigkeit erfolgen. Die Wirkungsmechanismen und Zusammenhänge mit der Dauerfestigkeit wurden analysiert, um eine experimentelle Methode zur Bestimmung des Beschichtungseinflusses zu entwickeln. Abschließend erfolgt die Übertragung der Ergebnisse auf ein Verfahren zur Vorhersage der Betriebsfestigkeitssteigerung von beschichteten Betonbauteilen mit beliebiger Geometrie.
https://doi.org/10.22032/dbt.59146
Calibration of positioning microsystems with subatomic accuracy. - In: Engineering for a changing world, (2023), 1.4.117, S. 1-6
Multidimensional positioning, measuring and manipulation with a spatial resolution in the subatomic range are an upcoming demand in the area of nanotechnology. Nanopositioning and measuring machines (NMM) enable to measure and manipulate objects within a large addressable 3D-range of up to a few hundred millimetre in each dimension with a specified spatial resolution of down to 0.1 nm [1]. New approaches are needed to extend the potential of NMM technology to even smaller scales. In previous work [2] a proof-of-concept positioning system has been designed to achieve reproducibility and resolution for precise motion on subatomic scale. In a first approach, a scanning probe microscope will be used to measure a nanosized periodic lattice that serves as a scale for the position according to [3]. Here, we present a microsystem design with an addressable positioning range of ±100 μm that will carry the lattice structure. In order to precisely control the motion, the electrostatic drive and position sensor characteristics of the demonstrator must be calibrated thoroughly by means of an optical measuring system. A focused, range-resolved fibre-optic laser interferometer is comprised as the calibration standard. An uncertainty estimation for the measurement setup is carried out. It is shown that the desired positioning accuracy for the first tip- and grating-based setup can be achieved with the presented microsystems.
https://doi.org/10.22032/dbt.58741
Monolithic compliant mechanism for an EMFC mass comparator weighing cell. - In: Engineering for a changing world, (2023), 1.4.112, S. 1-14
Mass comparator weighing cells based on electromagnetic force compensation (EMFC) find application in the most demanding force and mass measurement applications. The centerpiece of these devices is a highly sensitive compliant mechanism with thin flexure hinges. The compliant mechanism forms the mechanical part of the mechatronic overall system. A novel mechanism based on an advanced adjustment concept has been developed, manufactured, and experimentally investigated. The adjustment is designed to further reduce the measurement uncertainty for mass comparisons by canceling out first-order error components. The focus is on the mechanical properties: stiffness, tilt sensitivity, and off-center load sensitivity. The elastic stiffness of the compliant mechanism is compensated by introducing a negative gravitational stiffness to enable the compensation of manufacturing deviations and to increase mass resolution.
https://doi.org/10.22032/dbt.58738