Gesamtliste aus der Hochschulbibliographie

Anzahl der Treffer: 492
Erstellt: Sat, 27 Apr 2024 23:16:13 +0200 in 0.0431 sec


Nozdrenko, Dmytro; Abramchuk, Olga; Prylutska, Svitlana; Vygovska, Oksana; Soroca, Vasil; Bogutska, Kateryna; Khrapatyi, Sergii; Prylutskyy, Yuriy; Scharff, Peter; Ritter, Uwe
Analysis of biomechanical parameters of muscle soleus contraction and blood biochemical parameters in rat with chronic glyphosate intoxication and therapeutic use of C60 fullerene. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 22 (2021), 9, 4977, S. 1-11

https://doi.org/10.3390/ijms22094977
Wang, Shouzhi; Zhao, Huaping; Lv, Songyang; Jiang, Hehe; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Lei, Yong
Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors. - In: Advanced energy materials, ISSN 1614-6840, Bd. 11 (2021), 18, 2100408, insges. 9 S.

Transition metal oxides have a great potential in sodium-ion capacitors (SICs) due to their pronouncedly higher capacity and low cost. However, their poor conductivity and fragile structure hinder their development. Herein, core-shell-like nickel-cobalt oxysulfide (NCOS) nanowires are synthesized and demonstrated as an advanced SICs anode. The bimetallic oxysulfide with multiple cation valence can promote the sodium ion adsorption and redox reaction, massive defects enable accommodation of the volume change in the sodiation/desodiation process, meanwhile the core-shell-like structure provides abundant channels for fast transfer of sodium ions, thereby synergistically making the NCOS electrode exhibit a high reversible sodium ion storage capacity (1468.5 mAh g^-1 at 0.1 A g^-1) and an excellent cyclability (90.5% capacity retention after 1000 cycles). The in-situ X-ray diffraction analysis unravels the insertion and conversion mechanism for sodium storage in NCOS, and the enhanced capability of NCOS is further verified by the kinetic analysis and theoretical calculations. Finally, SICs consisting of the NCOS anode and a boron-nitrogen co-doped carbon nanotubes cathode deliver an energy density of 205.7 Wh kg^-1, a power density of 22.5 kW kg^-1, and an outstanding cycling lifespan. These results indicate an efficient strategy in designing a high-performance anode for sodium storage based on bimetallic dianion compounds.



https://doi.org/10.1002/aenm.202100408
Wang, Anni; Gallino, Isabella; Riegler, Sascha Sebastian; Lin, Yi-Ting; Isaac, Nishchay Angel; Sauni Camposano, Yesenia Haydee; Matthes, Sebastian; Flock, Dominik; Jacobs, Heiko O.; Yen, Hung-Wei; Schaaf, Peter
Ultrafast formation of single phase B2 AlCoCrFeNi high entropy alloy films by reactive Ni/Al multilayers as heat source. - In: Materials and design, ISSN 1873-4197, Bd. 206 (2021), 109790, insges. 12 S.

High entropy alloy films of AlCoCrFeNi B2-ordered structure are formed during an ultrafast heating process by reactive Ni/Al multilayers. The self-propagating high-temperature reaction occurring in reactive Ni/Al multilayers after ignition represents an ultrafast heat source which is used for the transformation of a thin films Al/CoFe/CrNi multilayer structure into a single-phase high entropy alloy film. The materials design of the combined multilayers thus determines the phase formation. Conventional rapid thermal annealing transforms the multilayer into a film with multiple equilibrium phases. Ultrafast combustion synthesis produces films with ultrafine-grained single-phase B2-ordered compound alloy. The heating rates during the combustion synthesis are in the order of one million K/s, much higher than those of the rapid thermal annealing, which is about 7 K/s. The results are compared with differential scanning calorimetry experiments with heating rates ranging from about 100 K/s up to 25000 K/s. It is shown that the heating rate clearly determines the phase formation in the multilayers. The rapid kinetics of the combustion prevents long-range diffusion and promotes the run-away transformation. Thus, multilayer combustion synthesis using reactive Ni/Al multilayers as heat source represents a new pathway for the fabrication of single phase high-entropy alloy films.



https://doi.org/10.1016/j.matdes.2021.109790
Mohr-Weidenfeller, Laura; Häcker, Annika-Verena; Reinhardt, Carsten; Manske, Eberhard
Two-photon direct laser writing beyond the diffraction limit using the nanopositioning and nanomeasuring machine. - In: Nanomanufacturing and metrology, ISSN 2520-8128, Bd. 4 (2021), 3, S. 149-155

Since the first realization of two-photon direct laser writing (DLW) in Maruo et al. (Opt Lett 22:132-134, 1997), the manufacturing using direct laser writing techniques spread out in many laboratories all over the world. Photosensitive materials with different material properties open a new field for micro- and nanofabrication. The achievable structuring resolution using this technique is reported to be sub-100 nm (Paz et al. in J. Laser Appl. 24:042004, 2012), while a smallest linewidth of 25 nm could be shown in Tan et al. (Appl Phys Lett 90:071106, 2007). In our approach, the combination of DLW with the nanopositioning and nanomeasuring machine NMM-1 offers an improvement of the technique from the engineering side regarding the ultra-precise positioning (Weidenfeller et al. in Adv Fabr Technol Micro/Nano Opt Photon XI 10544:105440E, 2018). One big benefit besides the high positioning resolution of 0.1 nm is offered by the positioning range of 25 mm × 25 mm × 5 mm (Jäger et al. in Technisches Messen 67:319-323, 2000; Manske et al. in Meas Sci Technol 18:520-527, 2007). Thus, a trans-scale fabrication without any stitching or combination of different positioning systems is necessary. The immense synergy between the highly precise positioning and the DLW is demonstrated by the realization of resist lines and trenches whose center-to-center distance undergoes the modified diffraction limit for two-photon processes. The precise positioning accuracy enables a defined distance between illuminated lines. Hence, with a comparable huge width of the trenches of 1.655 [my]m due to a low effective numerical aperture of 0.16, a resist line of 30 nm between two written trenches could be achieved. Although the interrelationships for achieving such narrow trenches have not yet been clarified, much smaller resist lines and trench widths are possible with this approach in the near future.



https://doi.org/10.1007/s41871-021-00100-y
Prokhorova, Alexandra; Ley, Sebastian; Helbig, Marko
Quantitative interpretation of UWB radar images for non-invasive tissue temperature estimation during hyperthermia. - In: Diagnostics, ISSN 2075-4418, Bd. 11 (2021), 5, 818, insges. 16 S.

The knowledge of temperature distribution inside the tissue to be treated is essential for patient safety, workflow and clinical outcomes of thermal therapies. Microwave imaging represents a promising approach for non-invasive tissue temperature monitoring during hyperthermia treatment. In the present paper, a methodology for quantitative non-invasive tissue temperature estimation based on ultra-wideband (UWB) radar imaging in the microwave frequency range is described. The capabilities of the proposed method are demonstrated by experiments with liquid phantoms and three-dimensional (3D) Delay-and-Sum beamforming algorithms. The results of our investigation show that the methodology can be applied for detection and estimation of the temperature induced dielectric properties change.



https://doi.org/10.3390/diagnostics11050818
Gizatullin, Bulat; Papmahl, Eric; Mattea, Carlos; Stapf, Siegfried
Quantifying crude oil contamination in sand and soil by EPR spectroscopy. - In: Applied magnetic resonance, ISSN 1613-7507, Bd. 52 (2021), 5, S. 633-648

Crude oil frequently contains stable radicals that allow detection by means of EPR spectroscopy. On the other hand, most sands and soils possess significant amounts of iron, manganese or other metallic species that often provide excessively broad EPR signatures combined with well-defined sharp features by quartz defects. In this study, we demonstrate the feasibility to identify oil contamination in natural environments that are subject to oil spillage during production on land, as well as beachside accumulation of marine oil spillage. Straightforward identification of oil is enabled by the radical contributions of asphaltenes, in particular by vanadyl multiplets that are absent from natural soils. This potentially allows for high-throughput soil analysis or the application of mobile EPR scanners.



https://doi.org/10.1007/s00723-021-01331-4
Wüster, Julian; Bourgin, Yannick; Feßer, Patrick; Behrens, Arne; Sinzinger, Stefan
Nano-imprinted subwavelength gratings as polarizing beamsplitters. - In: Journal of the European Optical Society, ISSN 1990-2573, Bd. 17 (2021), 1, 4, S. 1-13

Polarizing beamsplitters have numerous applications in optical systems, such as systems for freeform surface metrology. They are classically manufactured from birefringent materials or with stacks of dielectric coatings. We present a binary subwavelength-structured form-birefringent diffraction grating, which acts as a polarizing beamsplitter for a wide range of incidence angles -30˚…+30˚. We refine the general design method for such hybrid gratings. We furthermore demonstrate the manufacturing steps with Soft-UV-Nanoimprint-Lithography, as well as the experimental verification, that the structure reliably acts as a polarizing beamsplitter. The experimental results show a contrast in efficiency for TE- and TM-polarization of up to 1:18 in the first order, and 34:1 in the zeroth order. The grating potentially enables us to realize integrated compact optical measurement systems, such as common-path interferometers.



https://doi.org/10.1186/s41476-021-00149-8
Schienbein, Ralf; Fern, Florian; Theska, René; Supreeti, Shraddha; Füßl, Roland; Manske, Eberhard
Fundamental investigations in the design of five-axis nanopositioning machines for measurement and fabrication purposes. - In: Nanomanufacturing and metrology, ISSN 2520-8128, Bd. 4 (2021), 3, S. 156-164

The majority of nanopositioning and nanomeasuring machines (NPMMs) are based on three independent linear movements in a Cartesian coordinate system. This in combination with the specific nature of sensors and tools limits the addressable part geometries. An enhancement of an NPMM is introduced by the implementation of rotational movements while keeping the precision in the nanometer range. For this purpose, a parameter-based dynamic evaluation system with quantifiable technological parameters has been set up and employed to identify and assess general solution concepts and adequate substructures. Evaluations taken show high potential for three linear movements of the object in combination with two angular movements of the tool. The influence of the additional rotation systems on the existing structure of NPMMs has been investigated further on. Test series on the repeatability of an NPMM enhanced by a chosen combination of a rotary stage and a goniometer setup are realized. As a result of these test series, the necessity of in situ position determination of the tool became very clear. The tool position is measured in situ in relation to a hemispherical reference mirror by three Fabry-Pérot interferometers. FEA optimization has been used to enhance the overall system structure with regard to reproducibility and long-term stability. Results have been experimentally investigated by use of a retroreflector as a tool and the various laser interferometers of the NPMM. The knowledge gained has been formed into general rules for the verification and optimization of design solutions for multiaxial nanopositioning machines.



https://doi.org/10.1007/s41871-021-00102-w
Moller, Sebastian; Resagk, Christian; Cierpka, Christian
Long-time experimental investigation of turbulent superstructures in Rayleigh-Bénard convection by noninvasive simultaneous measurements of temperature and velocity fields. - In: Experiments in fluids, ISSN 1432-1114, Bd. 62 (2021), 4, 64, S. 1-18

Large-scale mean patterns in Rayleigh-Bénard convection, also referred to as turbulent superstructures, have mainly been studied by means of numerical simulations so far, but experimental investigations are still rare. However, the analysis of turbulent superstructures, which are of great importance due to their effect on the local transport of heat and momentum, require both numerical and experimental data. Therefore, within the scope of this study measurements were performed in the horizontal mid plane and in a horizontal plane closer to the top of a Rayleigh-Bénard cell with an aspect ratio of [Gamma]=l/h=25, thereby showing the initial formation of turbulent superstructures and their long-time rearrangement. The turbulent superstructures are investigated experimentally by noninvasive simultaneous measurements of temperature and velocity fields, using the color signal of thermochromic liquid crystals (TLCs) for the evaluation of the temperature and their temporal displacement for the determination of all three velocity components in the measurement planes via stereoscopic particle image velocimetry (stereo-PIV). Applying this measuring technique it is demonstrated that the time-averaging of instantaneous temperature and velocity fields uncovers the turbulent superstructures in both fields. Furthermore, the combination of the temperature and velocity data is used to characterize the local heat flux quantified by the local Nusselt number, which confirms that the turbulent superstructures strongly enhance the heat transfer in Rayleigh-Bénard convection.



https://doi.org/10.1007/s00348-020-03107-1
Kurniawan, Mario; Stich, Michael; Marimon, Mayra; Camargo, Magali K.; Peipmann, Ralf; Hannappel, Thomas; Bund, Andreas
Electrodeposition of cuprous oxide on a porous copper framework for an improved photoelectrochemical performance. - In: Journal of materials science, ISSN 1573-4803, Bd. 56 (2021), 20, S. 11866-11880

https://doi.org/10.1007/s10853-021-06058-y