Theses

Results: 30
Created on: Mon, 06 Dec 2021 23:13:52 +0100 in 0.0738 sec


Küstner, Markus Anton;
Modellierung von Problemen als quadratische unrestringierte binäre Optimierungsprobleme. - Ilmenau. - 56 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2021

Ein adiabatischer Quantencomputer kann quadratische unrestringierte binäre Optimierungsprobleme (QUBO-Probleme) effizient lösen, unter bestimmten Voraussetzungen sogar schneller als herkömmliche Computer. Das Ziel dieser Arbeit ist es herauszufinden, welche Optimierungsprobleme als QUBO-Problem modelliert werden können und in welcher Form dies möglich ist. Es stellt sich heraus, dass beliebige ganzzahlige Optimierungsprobleme als QUBO-Pro- bleme modelliert werden können, sofern geeignete Straffunktionen existieren und alle Variablen beschränkt sind. Für die nötigen Umformungsschritten werden die Voraussetzungen diskutiert. Dies umfasst Binärdarstellungen von beschränkten ganzzahligen Variablen, die Reduzierung des Grades multilinearer binärer Polynome und das Aufnehmen von Nebenbedingungen in die Zielfunktion. Des Weiteren werden für multilineare binäre Gleichungs- und Ungleichungsnebenbedingungen geeignete Straffunktionen aufgestellt und verschiedene Möglichkeiten der Wahl der Straffunktionen diskutiert. Zudem wird analysiert, wie mit Betragsfunktionen in Nebenbedingungen und in Zielfunktionen verfahren werden kann.



Schneider, Lucia Chantal;
Anwendung von Taylorpolynomen zweiter Ordnung zur Äußeren Approximation. - Ilmenau. - 49 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2021

Die Klasse der gemischt-ganzzahligen nichtlinearen Optimierungsprobleme bietet ein breites Spektrum an Anwendungsmöglichkeiten, unter anderem die Modulation von Versorgungsnetzwerken oder Verkehrsströmen. Es ist daher von großem Interesse, neue Lösungsverfahren für diese Art von Optimierungsproblemen zu finden und bereits bekannte Ansätze weiterzuentwickeln. In dieser Arbeit wird die Erweiterung der Äußeren Approximation durch die Anwendung von Taylorpolynomen zweiter Ordnung untersucht. Dazu wird eine Reihe von Möglichkeiten zur Gewinnung geeigneter quadratischer Approximationen der Nebenbedingungen zusammengetragen und deren praktische Anwendbarkeit diskutiert. Weiterhin werden die Ergebnisse der klassischen linearen und der erweiterten quadratischen Äußeren Approximation für ausgewählte Testbeispiele miteinander verglichen.



Warnow, Leo;
Error measures for necessary optimality conditions in single- and multi-objective optimization. - Ilmenau. - 69 Seiten
Technische Universität Ilmenau, Masterarbeit 2019

Eine zentrale Anforderung an das numerische Lösen von Optimierungsproblemen mit Hilfe von Computeralgorithmen besteht in der Verifizierung der Optimalität einer gefundenen Lösung. Ein häufig genutzter Ansatz dafür ist die numerische Überprüfung notwendiger Optimalitätskriterien. In dieser Arbeit werden verschiedene solcher Kriterien für skalarwertige und multikriterielle Optimierungsprobleme vorgestellt. Zudem werden sogenannte Fehlerfunktionen eingeführt, die als Maß der Verletzung notwendiger Optimalitätsbedingungen dienen. Deren Eigenschaften werden untersucht und an einzelnen Beispielen demonstriert.



Rocktäschel, Stefan;
A BB algorithm for multiobjective mixed-integer convex optimization. - Ilmenau. - 56 Seiten
Technische Universität Ilmenau, Masterarbeit 2018

Diese Masterarbeit beschäftigt sich mit multikriteriellen gemischt-ganzzahligen konvexen Optimierungsproblemen. Derartige Probleme treten beispielsweise in Ingenieurs- oder Wirtschaftswissenschaften auf. Hierbei ist man oft daran interessiert, alle effizienten Punkte für diese Optimierungsprobleme zu bestimmen. Zunächst werden in dieser Arbeit die theoretischen Grundlagen der multikriteriellen Optimierung dargestellt. Anschließend wird ein Branch-and-Bound Algorithmus zur Bestimmung einer Lösungsüberdeckung solcher Optimierungsprobleme vorgestellt und die einzelnen Teilschritte genauer beleuchtet. Dabei werden Auswahlkriterien, der Bisektionsschritt, Zulässigkeitskriterien und Verwerfungskriterien, die wir basierend auf oberen und unteren Schranken für die Zielfunktion formulieren, betrachtet. Weiterhin wird der Algorithmus noch durch weitere Modifikationen erweitert und liefert dadurch genauere Lösungsüberdeckungen. Der erweiterte Algorithmus wurde in MATLAB implementiert und anhand von uns entwickelter Testbeispiele getestet.



Hoffmann, Moritz;
Über ein Branch-and-Bound Verfahren der konvexen Optimierung. - Ilmenau. - 30 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2018

Diese Bachelorarbeit beschäftigt sich mit einem Branch-and-Bound Algorithmus zur konvexen quadratischen ganzzahligen Optimierung. Ein zentraler Punkt solcher Verfahren ist die Verbesserung unterer Schranken, um möglichst viele Äste, die zu keiner Minimallösung führen werden, entfernen zu können. Zu diesem Zweck nutzen wir die Ganzzahligkeit und passende Ellipsoide, mit deren Hilfe wir die untere Schranke, welche durch das Minimum der stetigen Relaxierung gegeben ist, verbessern können.



Degenhardt, Laura;
Zusammenhang zwischen restringierter und multikriterieller Optimierung. - Ilmenau. - 38 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2018

In der Praxis sollen zu meist Abläufe optimiert werden, bei denen sich konkurrierende Ziele gegenüberstehen. Es stellt sich die Frage, ob es vorteilhafter ist, diese Probleme restringiert oder multikriteriell zu lösen. Um dies zu beantworten, muss man sich mit dem Zusammenhang zwischen restringierten und multikriteriellen Optimierungsproblemen auseinandersetzen. Es wird gezeigt, dass sich die jeweiligen Probleme ineinander umformen lassen. Ebenfalls wird untersucht, in welchen Beziehungen die Lösungsmengen zueinander stehen. Dafür betrachtet man unterschiedliche Skalarisierungsmethoden multikriterieller Optimierungsprobleme. Diese enge Verknüpfung beider Probleme wird beim Filteransatz genutzt, um restringierte Optimierungsprobleme zu lösen. Dazu wird ein SQP-Filter-Algorithmus angegeben, welcher unter gewissen Voraussetzungen einen KKT-Punkt liefert oder eine unendliche Iterationsfolge ausgibt, welche einen Häufungspunkt besitzt, der die KKT-Bedingung erfüllt.



Steinacker, Alex;
Parametrische Optimierung : eine Betrachtung der Minimalwertfunktion. - Ilmenau. - 44 Seiten
Technische Universität Ilmenau, Masterarbeit 2018

In diversen Anwendungsbereichen, wie etwa der Spieltheorie, der Finanzmathematik oder der Systemtheorie, treten mengenwertige Optimierungsprobleme auf. Ein Ansatz zur Lösung dieser besteht in der Betrachtung sogenannter parametrischer Optimierungsprobleme; das sind Optimierungsprobleme, die von einem Parameter abhängen. Die Funktion, die jedem Parameter den Optimalwert des entsprechenden Problems zuordnet, heißt Minimalwertfunktion und wird in dieser Masterarbeit genauer betrachtet. Dabei sind insbesondere ihre Minimallösungen für die ursprünglichen mengenwertigen Probleme von Interesse. Um diese mittels numerischer Verfahren der Optimierung bestimmen zu können, spielen die Eigenschaften der Minimalwertfunktion eine zentrale Rolle. In dieser Arbeit werden deshalb hinreichende Bedingungen für die Stetigkeit, Konvexität und die Richtungsdifferenzierbarkeit dieser Funktion vorgestellt.



Warnow, Leo;
Qualitätsmaße für Lösungsapproximationen mengenwertiger Optimierungsprobleme. - Ilmenau. - 67 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2017

Mengenwertige Optimierungsprobleme besitzen im Allgemeinen unendlich viele optimale Lösungen. Daher wird statt der gesamten Lösungsmenge häufig nur eine endliche Lösungsapproximation angegeben. In dieser Arbeit werden vier Qualitätsmaße für solche Lösungsapproximationen mengenwertiger Optimierungsprobleme entwickelt. Sie sollen einen qualitativen Vergleich verschiedener Approximationen ermöglichen. Dabei wird der zentrale Ansatz verfolgt, bereits bekannte Qualitätsmaße für Lösungsapproximationen multikriterieller Optimierungsprobleme auch für Lösungsapproximationen mengenwertiger Optimierungsprobleme zu nutzen.



Laudenberg, Laura;
Modellfunktionen in der multikriteriellen Optimierung. - Ilmenau. - 79 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2017

Bei der Optimierung mit einer oder mehreren Zielfunktionen treten in der Praxis häufig teure Funktionen auf, deren Berechnung großen Rechenaufwand verursacht. Um hohe Rechenzeiten zu vermeiden, werden solche Funktionen durch leichter zu berechnende Modelle ersetzt. Diese Bachelorarbeit untersucht die Modellierung mit quadratischen Lagrange-Polynomen für bivariate Funktionen und die Auswirkungen, die die Verwendung eines Modells auf bikriterielle Optimierungsprobleme hat. Dabei werden insbesondere die Veränderungen der Menge der effizienten Punkte, die bei dem Ersetzen einer Zielfunktion durch eine quadratische Modellfunktion auftreten, an selbst gewählten Testproblemen betrachtet und grafisch veranschaulicht.



Wu, Liru;
Richtungsableitungen und Taylor-Formel für mengenwertige Abbildungen. - Ilmenau. - 50 Seiten
Technische Universität Ilmenau, Masterarbeit 2017

Die vorliegende Masterarbeit stellt einige grundlegende Konzepte der mengenwertigen Optimierung mit dem Mengenzugang vor: Es wird eine spezielle Mengendifferenz und addition eingeführt und darauf aufbauend eine Richtungsableitung und eine Taylor-Formel für mengenwertige Abbildungen. Es wurden Algorithmen zur Berechnung dieser Konzepte entwickelt, mit Matlab implementiert, und an verschiedenen mengenwertigen Abbildungen getestet.