Tuning the morphology of bimetallic gold-platinum nanorods in a microflow synthesis. - In: Colloids and surfaces, ISSN 1873-4359, Bd. 626 (2021), 127085
An automated microfluidic system with computer-controlled syringe pumps was applied for screening a three-dimensional concentration space for the formation of binary gold-platinum metal nanorods. Leveraging the micro segmented flow technique, precise residence and reactant addition timings as well as concentration spaces were addressed. The density and thickness of quasi-isotropic platinum shells on gold nanorod cores were tuned from isolated spots to a dense arrangement of high-aspect-ratio columns. The changing optical properties of the particles in the platinum deposition were used for monitoring the reaction progress and the products by the means of a fiber based micro flow-through spectrophotometer allowing to optimize process times. From our data, we propose an electrochemical model, postulating a diode-like effect and limitations for the formation of Pt nuclei on the gold surface and the formation of nano local elements. This point of view is supported by the observed decoration effects of gold facets and to the formation of columnar structures of the platinum shell.
https://doi.org/10.1016/j.colsurfa.2021.127085
Softness meets with brightness: dye-doped multifunctional fluorescent polymer particles via microfluidics for labeling. - In: Advanced optical materials, ISSN 2195-1071, Bd. 9 (2021), 13, 2002219, insges. 22 S.
Fluorogenic labeling strategies have emerged as powerful tools for in vivo and in vitro imaging applications for diagnostic and theranostic purposes. Free organic chromophores (fluorescent dyes) are bright but rapidly degrade. Inorganic nanoparticles (e.g., quantum dots) are photostable but toxic to biological systems. Alternatively, dye-doped polymer particles are promising for labeling and imaging due to their properties that overcome limitations of photodegradation and toxicity. This progress report, therefore, presents various synthesis techniques for the generation of dye-doped fluorescent polymer particles. Polymer particles are relatively soft compared to inorganic nanoparticles and can be synthesized with characteristics like biocompatibility and stimuli responsiveness. Also, their ability of loading fluorophores through various interactions reveals brightness. Here, a multiscale-multicolor library of bright and soft fluorescent polymer particles is generated hierarchically. Various microfluidic supported strategies have been applied where fluorophores can be linked to polymeric networks noncovalently and covalently in the interior, and at the surface of nanoparticles (60-550 nm). Besides, microfluidic strategies for hydrophilic and hydrophobic fluorescent polymer microparticles (20-800 [my]m) have been performed for systematic tuning in size and color combination. Furthermore, soft and bright particulate assemblies are enabled through interfacial interactions at the intermediate scale (600 nm-3 [my]m) between the nanometer and micrometer lengthscale.
https://doi.org/https://doi.org/10.1002/adom.202002219
Extremophiles in soil communities of former copper mining sites of the East Harz region (Germany) reflected by re-analyzed 16S rRNA data. - In: Microorganisms, ISSN 2076-2607, Bd. 9 (2021), 7, 1422, insges. 16 S.
The east and southeast rim of Harz mountains (Germany) are marked by a high density of former copper mining places dating back from the late 20th century to the middle age. A set of 18 soil samples from pre- and early industrial mining places and one sample from an industrial mine dump have been selected for investigation by 16S rRNA and compared with six samples from non-mining areas. Although most of the soil samples from the old mines show pH values around 7, RNA profiling reflects many operational taxonomical units (OTUs) belonging to acidophilic genera. For some of these OTUs, similarities were found with their abundances in the comparative samples, while others show significant differences. In addition to pH-dependent bacteria, thermophilic, psychrophilic, and halophilic types were observed. Among these OTUs, several DNA sequences are related to bacteria which are reported to show the ability to metabolize special substrates. Some OTUs absent in comparative samples from limestone substrates, among them Thaumarchaeota were present in the soil group from ancient mines with pH > 7. In contrast, acidophilic types have been found in a sample from a copper slag deposit, e.g., the polymer degrading bacterium Granulicella and Acidicaldus, which is thermophilic, too. Soil samples of the group of pre-industrial mines supplied some less abundant, interesting OTUs as the polymer-degrading Povalibacter and the halophilic Lewinella and Halobacteriovorax. A particularly high number of bacteria (OTUs) which had not been detected in other samples were found at an industrial copper mine dump, among them many halophilic and psychrophilic types. In summary, the results show that soil samples from the ancient copper mining places contain soil bacterial communities that could be a promising source in the search for microorganisms with valuable metabolic capabilities.
https://doi.org/10.3390/microorganisms9071422
Electrostatic control of Au nanorod formation in automated microsegmented flow synthesis. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 4 (2021), 2, S. 1411-1419
An automated flow rate program was applied for the synthesis of gold nanorods of different aspect ratios dependent on a two-dimensional concentration space of reducing agent and additional silver ions. It was found a regular redshift of the spectral position of the electromagnetic in-axis resonance of metal nanorods with decreasing concentration of reducing agent and increasing concentration of silver ions. The increase of resonance wavelength is strongly correlated with the aspect ratio of the formed nanorods. The experimental results agree with an electrostatic model of self-polarization due to positive excess charge of the nanorods in the presence of CTAB and confirm the crucial role of electrostatic control in the formation of nonspherical and composed nanoparticles in general.
https://doi.org/10.1021/acsanm.0c02941
Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. - In: International journal of systematic and evolutionary microbiology, ISSN 1466-5034, Bd. 71 (2021), 4, 004769
In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 ˚C, pH 7-8 and with 0.5-2% (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys-l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15:0, iso-C14:0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae , order Micrococcales ) as a sister taxon to the previously described species Haloactinobacterium glacieicola , sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7%, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae , i.e. the genera Haloactinobacterium and Ruania . Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.,
https://doi.org/10.1099/ijsem.0.004769
Hierarchical assemblies of polymer particles through tailored interfaces and controllable interfacial interactions. - In: Advanced functional materials, ISSN 1616-3028, Bd. 31 (2021), 9, 2007407, insges. 22 S.
Hierarchical assembly architectures of functional polymer particles are promising because of their physicochemical and surface properties for multi-labeling and sensing to catalysis and biomedical applications. While polymer nanoparticles' interior is mainly made up of the cross-linked network, their surface can be tailored with soft, flexible, and responsive molecules and macromolecules as potential support for the controlled particulate assemblies. Molecular surfactants and polyelectrolytes as interfacial agents improve the stability of the nanoparticles whereas swellable and soft shell-like cross-linked polymeric layer at the interface can significantly enhance the uptake of guest nano-constituents during assemblies. Besides, layer-by-layer surface-functionalization holds the ability to provide a high variability in assembly architectures of different interfacial properties. Considering these aspects, various assembly architectures of polymer nanoparticles of tunable size, shapes, morphology, and tailored interfaces together with controllable interfacial interactions are constructed here. The microfluidic-mediated platform has been used for the synthesis of constituents polymer nanoparticles of various structural and interfacial properties, and their assemblies are conducted in batch or flow conditions. The assemblies presented in this progress report is divided into three main categories: cross-linked polymeric network's fusion-based self-assembly, electrostatic-driven assemblies, and assembly formed by encapsulating smaller nanoparticles into larger microparticles.
https://doi.org/10.1002/adfm.202007407
In situ assembly of gold nanoparticles in the presence of poly-DADMAC resulting in hierarchical and highly fractal nanostructures. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 3, 1191, S. 1-13
The presence of the polycationic macromolecule poly(diallyldimethylammonium chloride) (poly-DADMAC) has a strong effect on the shape and size of colloidal gold nanoparticles formed by the reduction of tetrachloroauric acid with ascorbic acid in aqueous solution. It slows down nanoparticle growth and supports the formation of nonspherical, partially highly fractal and hierarchical nanoparticle shapes. Four structural levels have been recognized from the near-spherical gold nanoparticles in the lower nanometer range over compact aggregates in the midnanometer range and flower and star-like particles in the submicron range up to larger filamentous aggregates. High-contrast scanning electron microscope (SEM) images show that single gold nanoparticles and clusters of them are connected by bundles of macromolecules in large aggregates. The investigation showed that a large spectrum of different nanoparticle shapes and sizes can be accessed by tuning the poly-DADMAC concentrations and their ratio to other reactants. The nanoassemblies with a very high specific surface area might be of interest for SERS and heterogeneous catalysis.
https://doi.org/10.3390/app11031191
Sensor micro and nanoparticles for microfluidic application. - In: Applied Sciences, ISSN 2076-3417, Bd. 10 (2020), 23, 8353, S. 1-37
Micro and nanoparticles are not only understood as components of materials but as small functional units too. Particles can be designed for the primary transduction of physical and chemical signals and, therefore, become a valuable component in sensing systems. Due to their small size, they are particularly interesting for sensing in microfluidic systems, in microarray arrangements and in miniaturized biotechnological systems and microreactors, in general. Here, an overview of the recent development in the preparation of micro and nanoparticles for sensing purposes in microfluidics and application of particles in various microfluidic devices is presented. The concept of sensor particles is particularly useful for combining a direct contact between cells, biomolecules and media with a contactless optical readout. In addition to the construction and synthesis of micro and nanoparticles with transducer functions, examples of chemical and biological applications are reported.
https://doi.org/10.3390/app10238353
Emerging structural and interfacial features of particulate polymers at the nanoscale. - In: Langmuir, ISSN 1520-5827, Bd. 36 (2020), 44, S. 13125-13143
Particulate polymers at the nanoscale are exceedingly promising for diversified functional applications ranging from biomedical and energy to sensing, labeling, and catalysis. Tailored structural features (i.e., size, shape, morphology, internal softness, interior cross-linking, etc.) determine polymer nanoparticles' impact on the cargo loading capacity and controlled/sustained release, possibility of endocytosis, degradability, and photostability. The designed interfacial features, however (i.e., stimuli-responsive surfaces, wrinkling, surface porosity, shell-layer swellability, layer-by-layer surface functionalization, surface charge, etc.), regulate nanoparticles interfacial interactions, controlled assembly, movement and collision, and compatibility with the surroundings (e.g., solvent and biological environments). These features define nanoparticles' overall properties/functions on the basis of homogeneity, stability, interfacial tension, and minimization of the surface energy barrier. Lowering of the resultant outcomes is directly influenced by inhomogeneity in the structural and interfacial design through the structure-function relationship. Therefore, a key requirement is to produce well-defined polymer nanoparticles with controlled characteristics. Polymers are amorphous, flexible, and soft, and hence controlling their structural/interfacial features through the single-step process is a challenge. The microfluidics reaction strategy is very promising because of its wide range of advantages such as efficient reactant mixing and fast phase transfer. Overall, this feature article highlights the state-of-the-art synthetic features of polymer nanoparticles with perspectives on their advanced applications.
https://doi.org/10.1021/acs.langmuir.0c02566
Microbial community types and signature-like soil bacterial patterns from fortified prehistoric hills of Thuringia (Germany). - In: Community ecology, ISSN 1588-2756, Bd. 21 (2020), 2, S. 107-120
16S rRNA profiling has been applied for the investigation of bacterial communities of surface soil samples from forest-covered areas of ten prehistorical ramparts from different parts of Thuringia. Besides the majority bacterial types that are present in all samples, there could be identified bacteria that are highly abundant in some places and absent or low abundant in others. These differences are mainly related to the acidity of substrate and distinguish the communities of lime stone hills from soils of sand/quartzite and basalt hills. Minority components of bacterial communities show partially large differences that cannot be explained by the pH of the soil or incidental effects, only. They reflect certain relations between the communities of different places and could be regarded as a kind of signature-like patterns. Such relations had also been found in a comparison of the data from ramparts with formerly studied 16S rRNA profiling from an iron-age burial field. The observations are supporting the idea that a part of the components of bacterial communities from soil samples reflect their ecological history and can be understood as the "ecological memory" of a place. Probably such memory effects can date back to prehistoric times and might assist in future interpretations of archaeological findings on the prehistoric use of a place, on the one hand. On the other hand, the genetic profiling of soils of prehistoric places contributes to the evaluation of anthropogenic effects on the development of local soil bacterial diversity.
https://doi.org/10.1007/s42974-020-00017-4