recorded in the university bibliography from 2020:

Results: 22
Created on: Wed, 01 May 2024 23:10:46 +0200 in 0.0188 sec


Hasselmann, Sebastian; Kopittke, Caroline; Götz, Maria; Witzel, Patrick; Riffel, Jacqueline; Heinrich, Doris
Tailored nanotopography of photocurable composites for control of cell migration. - In: RSC Advances, ISSN 2046-2069, Bd. 11 (2021), 8, S. 4286-4296

External mechanical stimuli represent elementary signals for living cells to adapt to their adjacent environment. These signals range from bulk material properties down to nanoscopic surface topography and trigger cell behaviour. Here, we present a novel approach to generate tailored surface roughnesses in the nanometer range to tune surface properties by particle size and volume ratio. Time-resolved local mean-squared displacement (LMSD) analysis of amoeboid cell migration reveals that nanorough surfaces alter effectively cell migration velocities and the active cell migration phases. Since the UV curable composite material is easy to fabricate and can be structured via different light based processes, it is possible to generate hierarchical 3D cell scaffolds for tissue engineering or lab-on-a-chip applications with adjustable surface roughness in the nanometre range.



https://doi.org/10.1039/D0RA06530G
Miao, Qing; Zurlo, Enrico; Bruin, Donny; Wondergem, Joeri A. J.; Timmer, Monika; Blok, Anneloes; Heinrich, Doris; Overhand, Mark; Huber, Martina; Ubbink, Marcellus
A two-armed probe for in-cell DEER measurements on proteins. - In: Chemistry - a European journal, ISSN 1521-3765, Bd. 26 (2020), 71, S. 17128-17133

The application of double electron-electron resonance (DEER) with site-directed spin labeling (SDSL) to measure distances in proteins and protein complexes in living cells puts rigorous restraints on the spin-label. The linkage and paramagnetic centers need to resist the reducing conditions of the cell. Rigid attachment of the probe to the protein improves precision of the measured distances. Here, three two-armed GdIII complexes, GdIII-CLaNP13a/b/c were synthesized. Rather than the disulfide linkage of most other CLaNP molecules, a thioether linkage was used to avoid reductive dissociation of the linker. The doubly GdIII labeled N55C/V57C/K147C/T151C variants of T4Lysozyme were measured by 95 GHz DEER. The constructs were measured in vitro, in cell lysate and in Dictyostelium discoideum cells. Measured distances were 4.5 nm, consistent with results from paramagnetic NMR. A narrow distance distribution and typical modulation depth, also in cell, indicate complete and durable labeling and probe rigidity due to the dual attachment sites.



https://doi.org/10.1002/chem.202002743

Publications to 2020: