Publications - Complete List as of 2007 (without theses)

Results: 122
Created on: Thu, 07 Dec 2023 23:02:56 +0100 in 0.0586 sec


Hafner, Anke; Straßburger, Steffen
The acceptance of augmented reality as a determining factor in intralogistics planning. - In: 54th CIRP CMS 2021, (2021), S. 1209-1214

In the automotive industry, an innovative tool to support the intralogistics planning is essential. One possibility is the use of augmented reality (AR). AR can be a suitable tool for improving the planning of intralogistics processes. An improvement of the intralogistics planning processes can be realized by applying this technology. The application thereby dependents on the acceptance of AR. In this paper, the Technology Acceptance Model and a survey are used to verify the acceptance of AR in intralogistics planning. In addition, relevant factors are identified having an impact on the acceptance using AR in intralogistics.



https://doi.org/10.1016/j.procir.2021.11.203
Kuehner, Kim Jessica; Scheer, Richard; Straßburger, Steffen
Digital Twin: finding common ground - a meta-review. - In: 54th CIRP CMS 2021, Bd. 104 (2021), S. 1227-1232

The concept of the Digital Twin in the context of Industry 4.0 is omnipresent in research concerning manufacturing. However, the understanding of the term varies between applications. Although scholars have previously reviewed research on the topic, a consensus was never reached. Therefore, this paper attempts to compare existing reviews relating to the Digital Twin with the purpose of detecting prevalent as well as contrasting views on key issues. It elucidates commonalities in terminology, conceivable benefits as well as remaining research issues. Hence, it provides a conceptual outline of the Digital Twin that further research can build upon.



https://doi.org/10.1016/j.procir.2021.11.206
Genath, Jonas; Bergmann, Sören; Spieckermann, Sven; Stauber, Stephan; Feldkamp, Niclas
Development of an integrated solution for data farming and knowledge discovery in simulation data :
Entwicklung einer integrierten Lösung für das Data Farming und die Wissensentdeckung in Simulationsdaten. - In: Simulation in Produktion und Logistik 2021, (2021), S. 377-386
Literaturangaben

Simulation is an established methodology for planning and evaluating manufacturing and logistics systems. In contrast to classical simulation studies, the method of knowledge discovery in simulation data uses a simulation model as a data generator (data farming). Subsequently, hidden, previously unknown and potentially useful cause-effect relationships can be uncovered on the generated data using data mining and visual analytics methods. So far, however, there is a lack of integrated, easy-to-use software solutions for the application of the data farming in operational practice. This paper presents such an integrated solution, which allows for generating experiment designs, implements a method to distribute the necessary experiment runs, and provides the user with tools to analyze and visualize the result data.



Scheer, Richard; Straßburger, Steffen; Knapp, Marc
Concepts for digital-physical connection : comparison, benefits and critical issues
Digital-physische Verbundkonzepte: Gegenüberstellung, Nutzeffekte und kritische Hürden. - In: Simulation in Produktion und Logistik 2021, (2021), S. 11-20
Literaturangaben

Several concepts for digital-physical connection exist in literature and practice. This paper provides an overview over prevalent concepts. It characterises their specific attributes and places them in contrast with each other. Furthermore, it describes the major benefits as well as the most critical issues in the implementation of these concepts. These potential benefits and issues might then also serve as indicators for further research. From a practical perspective, this paper introduces a straightforward procedure to indicate the appropriate and most efficient concept for any specific implementation of a digital-physical connection system. It bases this indication on the specific requirements of the application.



Römer, Anna Carina;
Simulation-based optimization of energy efficiency in production. - Wiesbaden : Springer Gabler, 2021. - xxviii, 221 Seiten. - (Forschung zur Digitalisierung der Wirtschaft | Advanced Studies in Business Digitization)
Technische Universität Ilmenau, Dissertation 2020

ISBN 978-3-658-32970-9

Die vorliegende Arbeit beschäftigt sich mit der Integration von Energieaspekten in die Produktionssimulation. Die Energieverbräuche von Produktionsanlagen werden in einem Simulationsmodell abgebildet, um diese für die simulationsbasierte Optimierung der Energieeffizienz nutzen zu können und damit eine umfassende Prozessqualität im Hinblick auf den optimalen Energieeinsatz im Produktionsprozess sicherzustellen. Dazu wird ein hybrider Simulationsansatz entwickelt, der verschiedene Simulationsparadigmen in einem Modell kombiniert. Die Hybridisierung von Simulationsmodellen bietet dem Modellersteller eine große Flexibilität bei der Erfassung von Problemen, die sich gleichzeitig auf diskrete und kontinuierliche Strukturen beziehen. Das Simulationsmodell wird dann für Optimierungsexperimente genutzt. Die Grundidee hinter diesem Ansatz ist es, durch mehrere Iterationen, eine optimale Lösung für die zu variierenden Optimierungsparameter zu finden. Die Simulation wird durch die Optimierung gestartet, liefert die Ergebnisdaten und bildet die Grundlage für eine Beurteilung des dynamischen Verhaltens des abgebildeten Produktionssystems. Um die energetischen Aspekte in der Produktion für Optimierungsszenarien zu nutzen, werden lexikographisch geordnete Zielfunktionen abgeleitet, die im Rahmen von simulationsbasierten Optimierungsexperimenten ideale Parameterkonfigurationen für den energieeffizienten Betrieb der Produktion ermitteln. Der Fokus liegt dabei auf der Reduzierung des Energieverbrauchs durch die Vermeidung nicht-wertschöpfender Maschinenzeiten. Die Verbrauchsoptimierung zeigt auf, dass Unternehmen dieser Ressourcenverschwendung durch ein effizientes Schalten der Anlagen entgegenwirken können, ohne finanzielle Investitionen in neue Technologien zu tätigen. Neben der Optimierung des Gesamtenergiebedarfs werden im Rahmen einer Lastspitzen-Optimierung die Maschinenstarts innerhalb eines definierten Zeitraumes so angepasst, dass auftretende Spitzenlasten reduziert werden. Die praktische Anwendung der Methodik zeigt, dass es möglich ist, ein hybrides Simulationsmodel zur Darstellung des Energieverbrauchsverhaltens in der Produktion auf Basis historischer Verbrauchsdaten aufzubauen und in Kombination mit Prognosezahlen auch die zukünftigen Energieverbräuche mit den anstehenden Spitzenlasten und nicht wertschöpfenden Produktionsphasen sehr genau abzubilden.



Wack, Karl-Josef;
Interdisziplinäre Absicherung der Produktionsplanung in der Automobilindustrie. - Ilmenau : Universitätsverlag Ilmenau, 2020. - 1 Online-Ressource (XIII, 313 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Die Automobilindustrie ist einer der bedeutendsten Industriezweige in Deutschland, die sich ständig im Spannungsfeld aus Qualität, Produktivität und Kosten bewegt. Der globale Wettbewerb führt zu kürzeren Innovations- sowie Produktzyklen - die Kundenanforderungen zu einer umfangreichen Individualisierbarkeit der Produkte. Die Produktkomplexität eines Automobils ist heutzutage enorm. Eine Komplexität, welche die Produktentwicklung, die Produktionsplanung sowie die Produktion ständig vor neue Herausforderungen stellt und in einem Streben nach Perfektion und kontinuierlicher Verbesserung mündet. Es ist beeindruckend zu durchleben, wie bei einem Produktionsanlauf alle Prozesse integriert werden und bei einer Serienfertigung ca. alle 90 Sekunden ein gefertigtes Fahrzeug vom Band läuft. Um einen effizienten Produktionsanlauf zu gewährleisten, wird dieser im Vorfeld abgesichert. In Bezug auf manuelle Montageumfänge findet dies in der sogenannten Produktionsvorbereitung statt, welche unter Beteiligung verschiedener Planungsbereiche interdisziplinär erfolgt. Die Produktionsvorbereitung ist der Serienentwicklung und Serienvorbereitung zugeordnet. In dieser Phase werden gemäß dem aktuellen Planungsstand physische Prototypen des Produktes stationsweise, mit den dazugehörigen Arbeitsinhalten, aufgebaut. Neben der Verifikation des eigentlichen Produktes dient diese Phase dazu, einen effizienten Produktionsanlauf sicherzustellen. Die Absicherung von Produkt und Produktion ist in der Automobilindustrie sehr gut etabliert und wird frühzeitig angewandt. Neben physischen Absicherungen werden vermehrt virtuelle Absicherungen durch den Einsatz von IT-Systemen und Simulationen eingesetzt. Die vorliegende Arbeit befasst sich mit der Phase der Produktionsvorbereitung und der damit verbundenen Absicherung des Produktionsanlaufs im Hinblick auf manuelle Montageumfänge in der Automobilindustrie. Im Fokus steht hierbei eine virtuelle Absicherung der Produktionsvorbereitung und die Unterstützung der Kollaboration und Dokumentation der interdisziplinären Produktionsvorbereitung.



https://doi.org/10.22032/dbt.41303
Feldkamp, Niclas; Bergmann, Sören; Straßburger, Steffen
Simulation-based deep reinforcement learning for modular production systems. - In: 2020 Winter Simulation Conference (WSC), (2020), S. 1596-1607

Modular production systems aim to supersede the traditional line production in the automobile industry. The idea here is that highly customized products can move dynamically and autonomously through a system of flexible workstations without fixed production cycles. This approach has challenging demands regarding planning and organization of such systems. Since each product can define its way through the system freely and individually, implementing rules and heuristics that leverage the flexibility in the system in order to increase performance can be difficult in this dynamic environment. Transport tasks are usually carried out by automated guided vehicles (AGVs). Therefore, integration of AI-based control logics offer a promising alternative to manually implemented decision rules for operating the AGVs. This paper presents an approach for using reinforcement learning (RL) in combination with simulation in order to control AGVs in modular production systems. We present a case study and compare our approach to heuristic rules.



https://doi.org/10.1109/WSC48552.2020.9384089
Wörrlein, Benjamin; Straßburger, Steffen
A method for predicting high-resolution time series using sequence-to-sequence models. - In: 2020 Winter Simulation Conference (WSC), (2020), S. 1075-1086

With the increasing availability of data, the desire to interpret that data and use it for behavioral predictions arises. Traditionally, simulation has used data about the real system for input data analysis or within data-driven model generation. Automatically extracting behavioral descriptions from the data and representing it in a simulation model is a challenge of these approaches. Machine learning on the other hand has proven successful to extract knowledge from large data sets and transform it into more useful representations. Combining simulation approaches with methods from machine learning seems therefore promising to combine the strengths of both approaches. Representing some aspects of a real system by a traditional simulation model and others by a model incorporating machine learning, a hybrid system model (HSM) is generated. This paper suggests a specific HSM incorporating a deep learning method for predicting the anticipated power usage of machining jobs.



https://doi.org/10.1109/WSC48552.2020.9383969
Wörrlein, Benjamin; Straßburger, Steffen
On the usage of deep learning for modelling energy consumption in simulation models. - In: Simulation Notes Europe, ISSN 2164-5353, Bd. 30 (2020), 4, S. 165-174

With the increasing availability of data, the desire to interpret that data and use it for behavioral predictions arises. Traditionally, simulation has used data about the real system for input data analysis or within data-driven model generation. Automatically extracting behavioral descriptions from the data and representing it in a simulation model is a challenge for these approaches. Machine learning on the other hand has proven successful in extracting knowledge from large data sets and transforming it into more useful representations. Combining simulation approaches with methods from machine learning seems, therefore, promising. Representing some aspects of a real system by a traditional simulation model and others by a model generated from machine learning, a hybrid system model (HSM) is generated. This paper discusses such HSMs and suggests a specific HSM incorporating a deep learning method for predicting the power consumption of machining jobs.



https://doi.org/10.11128/sne.30.tn.10536
Feldkamp, Niclas; Bergmann, Sören; Straßburger, Steffen
Knowledge discovery in simulation data. - In: ACM transactions on modeling and computer simulation, ISSN 1558-1195, Bd. 30 (2020), 4, S. 24:1-24:25

This article provides a comprehensive and in-depth overview of our work on knowledge discovery in simulations. Application-wise, we focus on manufacturing simulations. Specifically, we propose and discuss a methodology for designing, executing, and analyzing large-scale simulation experiments with a broad coverage of possible system behavior targeted at generating knowledge about the system. Based on the concept of data farming, we suggest a two-phase process which starts with a data generation phase, in which a smart experiment design is used to set up and efficiently execute a large number of simulation experiments. In the second phase, the knowledge discovery phase, data mining and visually aided analysis methods are applied on the gathered simulation input and output data. This article gives insights into this knowledge discovery phase by discussing different machine learning approaches and their suitability for different manufacturing simulation problems. With this, we provide guidelines on how to conduct knowledge discovery studies within the manufacturing simulation context. We also introduce different case studies, both academic and applied, and use them to validate our methodology.



https://doi.org/10.1145/3391299