Publikationen am Institut für Chemie und Biotechnik

Anzahl der Treffer: 879
Erstellt: Thu, 25 Apr 2024 23:11:47 +0200 in 0.0677 sec


Stolle, Heike Lisa Kerstin Stephanie; Kluitmann, Jonas; Csáki, Andrea; Köhler, Michael; Fritzsche, Wolfgang
Shape-dependent catalytic activity of gold and bimetallic nanoparticles in the reduction of methylene blue by sodium borohydride. - In: Catalysts, ISSN 2073-4344, Bd. 11 (2021), 12, 1442, S. 1-20

In this study the catalytic activity of different gold and bimetallic nanoparticle solutions towards the reduction of methylene blue by sodium borohydride as a model reaction is investigated. By utilizing differently shaped gold nanoparticles, i.e., spheres, cubes, prisms and rods as well as bimetallic gold–palladium and gold-platinum core-shell nanorods, we evaluate the effect of the catalyst surface area as available gold surface area, the shape of the nanoparticles and the impact of added secondary metals in case of bimetallic nanorods. We track the reaction by UV/Vis measurements in the range of 190-850 nm every 60 s. It is assumed that the gold nanoparticles do not only act as a unit transferring electrons from sodium borohydride towards methylene blue but can promote the electron transfer upon plasmonic excitation. By testing different particle shapes, we could indeed demonstrate an effect of the particle shape by excluding the impact of surface area and/or surface ligands. All nanoparticle solutions showed a higher methylene blue turnover than their reference, whereby gold nanoprisms exhibited 100% turnover as no further methylene blue absorption peak was detected. The reaction rate constant k was also determined and revealed overall quicker reactions when gold or bimetallic nanoparticles were added as a catalyst, and again these were highest for nanoprisms. Furthermore, when comparing gold and bimetallic nanorods, it could be shown that through the addition of the catalytically active second metal platinum or palladium, the dye turnover was accelerated and degradation rate constants were higher compared to those of pure gold nanorods. The results explore the catalytic activity of nanoparticles, and assist in exploring further catalytic applications.



https://doi.org/10.3390/catal11121442
Zeußel, Lisa; Aziz, Carlos; Schober, Andreas; Singh, Sukhdeep
pH-dependent selective colorimetric detection of proline and hydroxyproline with Meldrum's acid-furfural conjugate. - In: Chemosensors, ISSN 2227-9040, Bd. 9 (2021), 12, 343, S. 1-13

Activated 2-furfural gives intense color formation when reacted with amines, due to a ring opening reaction cascade that furnishes a conjugated molecular system. Unique colorimetric characteristic of this reaction makes it an interesting candidate for developing chemosensors operating in visible range. Among many activated 2-furfural derivatives, Meldrum's acid furfural conjugate (MAFC) recently gained significant interest as colorimetric chemosensor. MAFC has been explored as selective chemosensor for detecting amines in solution, secondary amines on polymer surfaces and even nitrogen rich amino acids (AA) in aqueous solution. In this work, the pH dependency of MAFC-AA reaction is explored. It was found that proline gives an exceptionally fast colored reaction at pH 11, whereas at other pHs, no naked eye color product formation was observed. The reaction sequence including ring opening reaction upon nucleophilic addition of cyclic amine of proline resulting in a conjugated triene was confirmed by NMR titrations. The highly pH dependent reaction can e.g., potentially be used to detect proline presence in biological samples. An even more intense color formation takes place in the reaction of natural proline derivative 4-hydroxyproline. The detection limit of proline and 4-hydroxyproline with MAFC solution was found to be 11 [my]M and 6 [my)M respectively.



https://doi.org/10.3390/chemosensors9120343
Hasselmann, Sebastian; Hahn, Lukas; Lorson, Thomas; Schätzlein, Eva; Sébastien, Isabelle; Beudert, Matthias; Lühmann, Tessa; Neubauer, Julia C.; Sextl, Gerhard; Luxenhofer, Robert; Heinrich, Doris
Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. - In: Materials Horizons, ISSN 2051-6355, Bd. 8 (2021), 12, S. 3334-3344

In this study, a novel approach to create arbitrarily shaped 3D hydrogel objects is presented, wherein freeform two-photon polymerization (2PP) is enabled by the combination of a photosensitive hydrogel and an intrinsic support matrix. This way, topologies without physical contact such as a highly porous 3D network of concatenated rings were realized, which are impossible to manufacture with most current 3D printing technologies. Micro-Raman and nanoindentation measurements show the possibility to control water uptake and hence tailor the Young's modulus of the structures via the light dosage, proving the versatility of the concept regarding many scaffold characteristics that makes it well suited for cell specific cell culture as demonstrated by cultivation of human induced pluripotent stem cell derived cardiomyocytes.



https://doi.org/10.1039/D1MH00925G
Schütt, Timo; Geitner, Robert; Bode, Stefan; Schubert, Ulrich Sigmar
Dialysis diffusion kinetics in polymer purification. - In: Macromolecules, ISSN 1520-5835, Bd. 54 (2021), 20, S. 9410-9417

Diffusion kinetics of a prior developed automated dialysis system are investigated via in situ NMR spectroscopy for an optimization of conventional and advanced polymer purification. Using a polymeric solution, mixed with the respective monomer, several parameters like starting concentration, solvent volume, and solvent exchange by flow or complete one-time exchange are varied, resulting in a significant decrease of purification time for the automated setup. With an increased solvent flow (from 0.9 to 5.5 mL/min), 5.4 h and 2000 mL of solvent are required to decrease the monomer concentration to the detection limit. Without solvent flow, which corresponds to conventional dialysis, only 9 h and 250 mL of solvent are required for the same result, which is a time- and solvent-saving development for common purification of polymers.



https://doi.org/10.1021/acs.macromol.1c01241
Kronfeld, Klaus-Peter; Mazétyté-Stasinskiené, Raminta; Zheng, Xuejiao; Köhler, Michael
Textured and hierarchically constructed polymer micro- and nanoparticles. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 21, 10421, S. 1-17

Microfluidic techniques allow for the tailored construction of specific microparticles, which are becoming increasingly interesting and relevant. Here, using a microfluidic hole-plate-device and thermal-initiated free radical polymerization, submicrometer polymer particles with a highly textured surface were synthesized. Two types of monomers were applied: (1) methylmethacrylate (MMA) combined with crosslinkers and (2) divinylbenzene (DVB). Surface texture and morphology can be influenced by a series of parameters such as the monomer-crosslinker-solvent composition, surfactants, and additives. Generally, the most structured surfaces with the simultaneously most uniform particles were obtained in the DVB-toluene-nonionic-tensides system. In a second approach, poly-MMA (PMMA) particles were used to build aggregates with bigger polymer particles. For this purpose, tripropyleneglycolediacrylate (TPGDA) particles were synthesized in a microfluidic co-flow arrangement and polymerized by light- irradiation. Then, PMMA particles were assembled at their surface. In a third step, these composites were dispersed in an aqueous acrylamide-methylenebisacrylamide solution, which again was run through a co-flow-device and photopolymerized. As such, entities consisting of particles of three different size ranges - typically 0.7/30/600 [my]m - were obtained. The particles synthesized by both approaches are potentially suitable for loading with or incorporation of analytic probes or catalysts such as dyes or metals.



https://doi.org/10.3390/app112110421
Marx-Blümel, Lisa; Marx, Christian; Sonnemann, Jürgen; Weise, Frank; Hampl, Jörg; Frey, Jessica; Rothenburger, Linda; Cirri, Emilio; Rahnis, Norman; Koch, Philipp; Groth, Marco; Schober, Andreas; Wang, Zhao-Qi; Beck, James F.
Molecular characterization of hematopoietic stem cells after in vitro amplification on biomimetic 3D PDMS cell culture scaffolds. - In: Scientific reports, ISSN 2045-2322, Bd. 11 (2021), 21163, S. 1-14

Hematopoietic stem cell (HSC) transplantation is successfully applied since the late 1950s. However, its efficacy can be impaired by insufficient numbers of donor HSCs. A promising strategy to overcome this hurdle is the use of an advanced ex vivo culture system that supports the proliferation and, at the same time, maintains the pluripotency of HSCs. Therefore, we have developed artificial 3D bone marrow-like scaffolds made of polydimethylsiloxane (PDMS) that model the natural HSC niche in vitro. These 3D PDMS scaffolds in combination with an optimized HSC culture medium allow the amplification of high numbers of undifferentiated HSCs. After 14 days in vitro cell culture, we performed transcriptome and proteome analysis. Ingenuity pathway analysis indicated that the 3D PDMS cell culture scaffolds altered PI3K/AKT/mTOR pathways and activated SREBP, HIF1α and FOXO signaling, leading to metabolic adaptations, as judged by ELISA, Western blot and metabolic flux analysis. These molecular signaling pathways can promote the expansion of HSCs and are involved in the maintenance of their pluripotency. Thus, we have shown that the 3D PDMS scaffolds activate key molecular signaling pathways to amplify the numbers of undifferentiated HSCs ex vivo effectively.



https://doi.org/10.1038/s41598-021-00619-6
Horak, Iryna; Prylutska, Svitlana; Krysiuk, Iryna; Luhovskyi, Serhii; Hrabovsky, Oleksii; Tverdokhleb, Nina; Franskevych, Daria; Rumiantsev, Dmytro; Senenko, Anton; Evstigneev, Maxim; Drobot, Liudmyla; Matyshevska, Olga; Ritter, Uwe; Piosik, Jacek; Prylutskyy, Yuriy
Nanocomplex of Berberine with C60 fullerene is a potent suppressor of Lewis lung carcinoma cells invasion in vitro and metastatic activity in vivo. - In: Materials, ISSN 1996-1944, Bd. 14 (2021), 20, 6114, insges. 15 S.
Im Titel ist "60" tiefgestellt

Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber’ low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber noncovalently bound to C60 fullerene (C60). The complexation between C60 and Ber molecules was evidenced with computer simulation. The aim of the present study was to estimate the effect of the free Ber and C60-Ber nanocomplex in a low Ber equivalent concentration on Lewis lung carcinoma cells (LLC) invasion potential, expression of epithelial-to-mesenchymal transition (EMT) markers in vitro, and the ability of cancer cells to form distant lung metastases in vivo in a mice model of LLC. It was shown that in contrast to free Ber its nanocomplex with C60 demonstrated significantly higher efficiency to suppress invasion potential, to downregulate the level of EMT-inducing transcription factors SNAI1, ZEB1, and TWIST1, to unblock expression of epithelial marker E-cadherin, and to repress cancer stem cells-like markers. More importantly, a relatively low dose of C60-Ber nanocomplex was able to suppress lung metastasis in vivo. These findings indicated that сomplexation of natural alkaloid Ber with C60 can be used as an additional therapeutic strategy against aggressive lung cancer.



https://doi.org/10.3390/ma14206114
Khan, Nida Zaman; Chen, Li-Yu; Lindenbauer, Annerose; Pliquett, Uwe; Rothe, Holger; Nguyen, Thi-Huong
Label-free detection and characterization of heparin-induced thrombocytopenia (HIT)-like antibodies. - In: ACS omega, ISSN 2470-1343, Bd. 6 (2021), 40, S. 25926-25939

Heparin-induced thrombocytopenia (HIT) antibodies (Abs) can mediate and activate blood cells, forming blood clots. To detect HIT Abs, immunological assays with high sensitivity (≥95%) and fast response are widely used, but only about 50% of these tests are accurate as non-HIT Abs also bind to the same antigens. We aim to develop biosensor-based electrical detection to better differentiate HIT-like from non-HIT-like Abs. As a proof of principle, we tested with two types of commercially available monoclonal Abs including KKO (inducing HIT) and RTO (noninducing HIT). Platelet factor 4/Heparin antigens were immobilized on gold electrodes, and binding of antibodies on the chips was detected based on the change in the charge transfer resistance (Rct). Binding of KKO on sensors yielded a significantly lower charge transfer resistance than that of RTO. Bound antibodies and their binding characteristics on the sensors were confirmed and characterized by complementary techniques. Analysis of thermal kinetics showed that RTO bonds are more stable than those of KKO, whereas KKO exhibited a higher negative ζ potential than RTO. These different characteristics made it possible to electrically differentiate these two types of antibodies. Our study opens a new avenue for the development of sensors for better detection of pathogenic Abs in HIT patients.



https://doi.org/10.1021/acsomega.1c02496
Ovsiienko, Iryna V.; Tsaregradskaya, Tatiana L.; Shpylka, D. O.; Matzui, Lyudmila Yu.; Saenko, Galina V.; Ritter, Uwe; Len, Tatiana A.; Prylutskyy, Yuriy I.
Magnetoresistance of carbon nanotubes filled by iron. - In: Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications & Properties" (NAP-2021), (2021), S. NMM05-1-NMM05-5

Paper presents the results of experimental investigations of magnetoresistance of filled with iron multi-walled carbon nanotubes. Multi-walled carbon nanotubes have been prepared by pyrolysis of benzene in a tubular quartz furnace at a temperature of 950˚C with use ferrocene as a source of iron. The obtained by this method carbon nanotubes contain in the inner cavity the particles of the magnetic phase, namely iron, iron carbide and iron oxides in various concentrations. The electrical resistance of bulk specimens of modified carbon nanotubes have been carried out in the temperature interval from 4.2 K to 293 K and in magnetic field up to 2 T. It is shown that magnetoresistance of modified carbon nanotubes is determined by a combination of two effects: the giant magnetoresistance effect and anisotropic magnetoresistance effect, moreover, the relative contribution of each effect depends on the concentration of the magnetic phase.



https://doi.org/10.1109/NAP51885.2021.9568395
Alam, Shahidul; Nádaždy, Vojtech; Váry, Tomáš; Friebe, Christian; Meitzner, Rico; Ahner, Johannes; Anand, Aman; Karuthedath, Safakath; Castro, Catherine S. P. De; Göhler, Clemens; Dietz, Stefanie; Cann, Jonathan; Kästner, Christian; Konkin, Alexander; Beenken, Wichard J. D.; Anton, Arthur Markus; Ulbricht, Christoph; Sperlich, Andreas; Hager, Martin; Ritter, Uwe; Kremer, Friedrich; Brüggemann, Oliver; Schubert, Ulrich Sigmar; Ayuk Mbi Egbe, Daniel; Welch, Gregory C.; Dyakonov, Vladimir; Deibel, Carsten; Laquai, Frédéric; Hoppe, Harald
Uphill and downhill charge generation from charge transfer to charge separated states in organic solar cells. - In: Journal of materials chemistry, ISSN 2050-7534, Bd. 9 (2021), 40, S. 14463-14489

It is common knowledge that molecular energy level offsets of a type II heterojunction formed at the donor-acceptor interface are considered to be the driving force for photoinduced charge transfer in organic solar cells. Usually, these offsets - present between molecular energy levels of the donor and acceptor - are obtained via cyclic voltammetry (CV) measurements of organic semiconductors cast in a film or dissolved in solution. Simply transferring such determined energy levels from solution or film of single materials to blend films may be obviously limited and not be possible in full generality. Herein, we report various cases of material combinations in which novel non-fullerene acceptors did not yield successful charge transfer, although energy levels obtained by CV on constituting single materials indicate a type II heterojunction. Whilst the integer charge transfer (ICT) model provides one explanation for a relative rise of molecular energy levels of acceptors, further details and other cases have not been studied so far in great detail. By applying energy-resolved electrochemical impedance spectroscopy (ER-EIS) on several donor-acceptor combinations, a Fano-like resonance feature associated with a distinctive molecular energy level of the acceptor as well as various relative molecular energy level shifts of different kinds could be observed. By analyzing ER-EIS and absorption spectra, not only the exciton binding energy within single materials could be determined, but also the commonly unknown binding energy of the CT state with regard to the joint density of states (jDOS) of the effective semiconductor. The latter is defined by transitions between the highest occupied molecular orbitals (HOMO) of the donor and the lowest unoccupied molecular orbitals (LUMO) of the acceptor. Using this technique among others, we identified cases in which charge generation may occur either via uphill or by downhill processes between the charge transfer exciton and the electronic gap of the effective semiconductor. Exceptionally high CT-exciton binding energies and thus low charge generation yields were obtained for a case in which the donor and acceptor yielded a too intimate blend morphology, indicating π-π stacking as a potential cause for unfavorable molecular energy level alignment.



https://doi.org/10.1039/D1TC02351A