PT-symmetric couplings of dual pairs. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (24 Seiten). - (Preprint ; M23,03)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200049
Spectral inclusion property for a class of block operator matrices. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (12 Seiten). - (Preprint ; M23,02)
The numerical range and the quadratic numerical range is used to study the spectrum of a class of block operator matrices. We show that the approximate point spectrum is contained in the closure of the quadratic numerical range. In particular, the spectral enclosures yield a spectral gap. It is shown that these spectral bounds are tighter than classical numerical range bounds.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200026
Lower bounds for self-adjoint Sturm-Liouville operators. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (11 Seiten). - (Preprint ; M23,01)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200011
Relative oscillation theory and essential spectra of Sturm-Liouville operators. - In: Journal of mathematical analysis and applications, ISSN 1096-0813, Bd. 518 (2023), 1, 126673
https://doi.org/10.1016/j.jmaa.2022.126673
Bifurcations from codimension-one D4m-equivariant homoclinic cycles. - Ilmenau, 2022. - 1 Online-Ressource (277 Seiten)
Technische Universität Ilmenau, Dissertation 2022
Das Thema dieser Arbeit ist eine detaillierte Beschreibung der Dynamik in der Nähe von D4m-symmetrischen relativen homoklinen Zykeln mit Hilfe von Lins Methode. Die homoklinen Zykel haben die Kodimension-1, d.h. wir beobachten ihre generische Entfaltung innerhalb einer einparametrigen Familie. Sie bestehen aus mehreren Trajektorien, die sowohl für positive als auch negative Zeit derselben hyperbolischen Gleichgewichtslage zustreben (Homokline Trajektorien) und die alle durch die von einer endlichen Gruppe induzierten Symmetrie voneinander abhängig sind. Wir nehmen reelle führende Eigenwerte und homokline Trajektorien an, die sich der Gleichgewichtslage entlang führender Richtungen nähern. Die Homoklinen befinden sich in flussinvarianten Unterräumen. Insbesondere für solche homoklinen Zykel in Differentialgleichungen mit Dk-Symmetrie (Dk ist die Symmetriegruppe eines regelmäßigen k-Ecks in der Ebene), bei denen k ein Vielfaches von 4 ist, stehen einige dieser flussinvarianten Unterräume senkrecht zueinander. Dies impliziert das Verschwinden der typischerweise auftretenden Terme führender exponentieller Konvergenzordnung in einigen der aus Lins Methode gewonnenen Bestimmungsgleichungen. Um eine genaue Beschreibung der nichtwandernden Dynamik eines solchen homoklinen Zykels zu geben, d.h. eine Beschreibung der Lösungen, die in der Umgebung des Zykels sowohl im Phasen- als auch im Parameterraum verbleiben, sind weitere Informationen über die Restterme in den Bestimmungsgleichungen erforderlich. In dieser Arbeit stellen wir eine verfeinerte Darstellung der Restterme in den Bestimmungsgleichungen vor und identifizieren zwei weitere Terme mit nächsthöheren exponentiellen Konvergenzraten. Darauf aufbauend diskutieren wir die Lösbarkeit der resultierenden Bestimmungsgleichungen für homokline Zykel in R4. Dabei sind zwei Fälle zu unterscheiden, die vom Größenverhältnis der beiden neuen Terme abhängen. In einem Fall beobachten wir einen endlichen Subshift. Im anderen Fall erweist sich die Analysis als schwieriger, so dass wir die Untersuchung auf periodische Lösungen beschränken.
A Jordan-like decomposition for linear relations in finite-dimensional spaces. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (34 Seiten). - (Preprint ; M22,05)
A square matrix A has the usual Jordan canonical form that describes the structure of A via eigenvalues and the corresponding Jordan blocks. If A is a linear relation in a finite-dimensional linear space H (i.e., A is a linear subspace of H × H and can be considered as a multivalued linear operator), then there is a richer structure. In addition to the classical Jordan chains (interpreted in the Cartesian product H × H), there occur three more classes of chains: chains starting at zero (the chains for the eigenvalue infinity), chains starting at zero and also ending at zero (the singular chains), and chains with linearly independent entries (the shift chains). These four types of chains give rise to a direct sum decomposition (a Jordan-like decomposition) of the linear relation A. In this decomposition there is a completely singular part that has the extended complex plane as eigenvalues; a usual Jordan part that corresponds to the finite proper eigenvalues; a Jordan part that corresponds to the eigenvalue infinity; and a multishift, i.e., a part that has no eigenvalues at all. Furthermore, the Jordan-like decomposition exhibits a certain uniqueness, closing a gap in earlier results. The presentation is purely algebraic, only the structure of linear spaces is used. Moreover, the presentation has a uniform character: each of the above types is constructed via an appropriately chosen sequence of quotient spaces. The dimensions of the spaces are the Weyr characteristics, which uniquely determine the Jordan-like decomposition of the linear relation.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200249
Eigenvalues of parametric rank one perturbations of matrix pencils. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (37 Seiten). - (Preprint ; M22,04)
The behavior of eigenvalues of regular matrix pencils under rank one perturbations which depend on a scalar parameter is studied. In particular we address the change of the algebraic multiplicities, the change of the eigenvalues for small parameter variations as well as the asymptotic eigenvalue behavior as the parameter tends to infinity. Besides that, an interlacing result for rank one perturbations of matrix pencils is obtained. Finally, we apply the result to a redesign problem for electrical circuits.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200237
Generalized boundary triples, II : some applications of generalized boundary triples and form domain invariant Nevanlinna functions. - In: Mathematische Nachrichten, ISSN 1522-2616, Bd. 295 (2022), 6, S. 1113-1162
The paper is a continuation of Part I and contains several further results on generalized boundary triples, the corresponding Weyl functions, and applications of this technique to ordinary and partial differential operators. We establish a connection between Post's theory of boundary pairs of closed nonnegative forms on the one hand and the theory of generalized boundary triples of nonnegative symmetric operators on the other hand. Applications to the Laplacian operator on bounded domains with smooth, Lipschitz, and even rough boundary, as well as to mixed boundary value problem for the Laplacian are given. Other applications concern with the momentum, Schrödinger, and Dirac operators with local point interactions. These operators demonstrate natural occurrence of ES$ES$-generalized boundary triples with domain invariant Weyl functions and essentially selfadjoint reference operators A0.
https://doi.org/10.1002/mana.202000049
Relative oscillation theory and essential spectra of Sturm-Liouville operators. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (15 Seiten). - (Preprint ; M22,02)
The relationship between linear relations and matrix pencils is investigated. Given a linear relation, we introduce its Weyr characteristic. If the linear relation is the range (or the kernel) representation of a given matrix pencil, we show that there is a correspondence between this characteristic and the Kronecker canonical form of the pencil. This relationship is exploited to obtain estimations on the invariant characteristics of matrix pencils under rank one perturbations.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200169
On characteristic invariants of matrix pencils and linear relations. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (35 Seiten). - (Preprint ; M22,01)
The relationship between linear relations and matrix pencils is investigated. Given a linear relation, we introduce its Weyr characteristic. If the linear relation is the range (or the kernel) representation of a given matrix pencil, we show that there is a correspondence between this characteristic and the Kronecker canonical form of the pencil. This relationship is exploited to obtain estimations on the invariant characteristics of matrix pencils under rank one perturbations.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200140