Anzahl der Treffer: 644
Erstellt: Sun, 28 Apr 2024 14:49:30 +0200 in 0.0392 sec


Middeldorf, Klaus; Aumüller, Dominik; Bergmann, Jean Pierre; Mann, Samuel; Sharma, Rahul; Reisgen, Uwe
Schweißtechnik 4.0: digitalisierte vernetzte schweißtechnische Fertigung - Konzepte und Anwendungen, Teil 2. - In: Schweissen und Schneiden, ISSN 0036-7184, Bd. 73 (2021), 4, S. 235-238

"Industrie 4.0" ist für kleine und mittelständische Unternehmen (KMU), die sich mit dem Fügen, Trennen und Beschichten auskennen, künftig von großer Bedeutung. Dabei geht es aber weniger darum, konkrete Produktions-, Fertigungs- oder Schweißprozesse zu beschreiben, sondern kritisch zu prüfen, wo in kleinen und mittelständischen Unternehmen Lücken hinsichtlich Industrie 4.0 bestehen und wie sich diese schließen lassen. Denn nur so können Unternehmen langfristig den bestehenden, digitalen Vorsprung für sich nutzen. Aus diesem Grund beschäftigt sich die Abreitsgruppe "Industrie 4.0" im DVS aktuell mit diesem Thema. Sie stößt die Diskussion über die Digitalisierung in der Schweißtechnik an und initiiert unter dem Titel "Vom Fortschritt profitieren: Industrie 4.0 in der Schweißtechnik" eine Serie von Fachbeiträgen in dieser Zeitschrift, die mit dem zweiten Teil in der vorliegenden Ausgabe fortgesetzt wird.



Beck, Tobias Alexander; Bantel, Christoph Michael; Boley, Meiko; Bergmann, Jean Pierre
OCT capillary depth measurement in copper micro welding using green lasers. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 6, 2655, S. 1-15

The transition of the powertrain from combustion to electric systems increases the demand for reliable copper connections. For such applications, laser welding has become a key technology. Due to the complexity of laser welding, especially at micro welding with small weld seam dimensions and short process times, reliable in-line process monitoring has proven to be difficult. By using a green laser with a wavelength of [lambda] = 515 nm, the welding process of copper benefits from an increased absorption, resulting in a shallow and stable deep penetration welding process. This opens up new possibilities for the process monitoring. In this contribution, the monitoring of the capillary depth in micro copper welding, with welding depth of up to 1 mm, was performed coaxially using an optical coherence tomography (OCT) system. By comparing the measured capillary depth and the actual welding depth, a good correlation between two measured values could be shown independently of the investigated process parameters and stability. Measuring the capillary depth allows a direct determination of the present aspect ratio in the welding process. For deep penetration welding, aspect ratios as low as 0.35 could be shown. By using an additional scanning system to superimpose the welding motion with a spacial oscillating of the OCT beam perpendicular to the welding motion, multiple information about the process could be determined. Using this method, several process information can be measured simultaneously and is shown for the weld seam width exemplarily.



https://doi.org/10.3390/app11062655
Weigl, Markus; Grätzel, Michael
Welche Verfahren für welche Anwendungen? : Schweißen von Strukturkomponenten aus Aluminium: Lichtbogen-, Laserstrahl- oder Rührreibschweißen. - In: Der Praktiker, ISSN 0554-9965, Bd. 73 (2021), 3, S. 98-101

Labus Zlatanovic, Danka; Balos, Sebastian; Bergmann, Jean Pierre; Rasche, Stefan; Zavašnik, Janez; Panchal, Vishal; Sidjanin, Leposava; Goel, Saurav
In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding. - In: International journal of machine tools & manufacture, Bd. 164 (2021), 103716, insges. 14 S.

Friction stir spot welding (FSSW) is a solid-state welding process, wherein the properties of a weld joint are influenced by the state of friction and localised thermodynamic conditions at the tool-workpiece interface. An issue well-known about FSSW joints is their lack of reliability since they abruptly delaminate at the weld-faying interface (WFI). This study explores the origins of the delamination of multiple lap welded aluminium alloy (AA 5754-H111) sheets joined by FSSW at different rotational speeds typically used in industry. Experimental techniques such as the small punch test (SPT), Vickers hardness test, Scanning Electron Microscopy (SEM), Scanning Acoustic Microscope (SAM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and Frequency-Modulated Kelvin Probe Force Microscopy (FM-KPFM) were employed. The experimental results revealed that a complex interplay of stress-assisted metallurgical transformations at the intersection of WFI and the recrystallised stir zone (RSZ) can trigger dynamic precipitation leading to the formation of Al3Mg2 intermetallic phase, while metallic oxides and nanopits remain entrapped in the WFI. These metallurgical transformations surrounded by pits, precipitates and oxides induces process instability which in turn paves way for fast fracture to become responsible for delamination.



https://doi.org/10.1016/j.ijmachtools.2021.103716
Bielenin, Martin;
Prozessstrategien zur Vermeidung von Heißrissen beim Schweißen von Aluminium mit pulsmodulierbaren Laserstrahlquellen. - Ilmenau : Universitätsverlag Ilmenau, 2021. - 1 Online-Ressource (185 Seiten). - (Fertigungstechnik - aus den Grundlagen für die Anwendung ; Band 10)
Technische Universität Ilmenau, Dissertation 2020

Das gepulste Laserstrahlschweißen ermöglicht die Vermeidung der Heißrissbildung beim Schweißen von 6xxx Aluminilegierungen ohne den Einsatz eines Schweißzusatzwerkstoffes. Im Rahmen der Arbeit wurden die Mechanismen und physikalischen Ursachen der Heißrissbildung beim gepulsten Laserstrahlschweißen untersucht und zusammenhängend beschrieben. Dafür wurde ein transientes thermomechanisches Simulationsmodell zur Abbildung des gepulsten Laserstrahlschweißprozesses mit zeitlich veränderlichem Pulsleistungsverlauf aufgebaut und experimentell validiert. Die zeit- und ortsaufgelöste Berechnung des gesamten Spannungs , Dehnungs- und Temperaturfeldes ermöglichte die Quantifizierung der wesentlichen Erstarrungsparameter an der Phasenfront zu jedem Zeitpunkt während Schmelzbadkristallisation. Die experimentellen Untersuchungen erfolgten repräsentativ an der industriell etablierten, aber heißrissanfälligen Legierung EN AW 6082-T6. Die grundlegenden experimentellen Untersuchungen wurden zunächst an modellhaften Einzelpunktschweißungen ausgeführt. Innerhalb der experimentellen Untersuchungen wurden drei Regime identifiziert, die sich in Abhängigkeit der Erstarrungsgeschwindigkeit des Schmelzbades ergeben und in denen unterschiedliche Mechanismen die Entstehung von Heißrissen dominieren. Wohingegen die Rissbildung bei hohen Erstarrungsgeschwindigkeiten auf die Dehnrate, die geringe Permeabilität des interdendritischen Netzwerks und die große Nachspeisedistanz zurückgeführt werden konnte, wurde bei langsamen Erstarrungsgeschwindigkeiten die Seigerung niedrigschmelzender Phasen an der Erstarrungsfront als Rissursache identifiziert. Punktüberlappende Nahtschweißungen sind durch das Umschmelzen rissbehafteter Bereiche des vorherigen Schweißpunktes weniger sensibel für die Bildung von Heißrissen als Punktschweißen. Auf Basis der gewonnenen Erkenntnisse wurden aus den prozesstechnischen und physikalischen Ursachen für die Prozessgrenzen Strategien zur Erweiterung abgeleitet, entwickelt und umgesetzt. Hierfür wurde das gepulste Laserstrahlschweißen mit räumlich überlagerter cw-Diodenlaserstrahlung im niedrigen Leistungsbereich untersucht. Mit dem entwickelten Prozessansatz können heißrissfreie Schweißnähte auch mit konventionellen Rechteckpulsen erzeugt werden. Darüber hinaus wird einerseits die Einschweißtiefe signifikant gesteigert. Anderseits wird durch die geringe Leistungszugabe des Diodenlasers die Schweißgeschwindigkeit um den Faktor 4 gegenüber dem derzeitigen Stand der Technik erhöht.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000609
Cerri, Emanuela; Pirondi, Alessandro; Bergmann, Jean Pierre
Friction stir welded AISI 304 metal sheets for application in food implants. - In: THERMEC 2021, (2021), S. 63-68

Stainless steels are indispensable materials in many industrial fields. They can be easily shaped and joined by traditional welding methods. Some problematics such as possible decrease in corrosion resistance at the welding bead and in the heat-effected zone, residual stress, crack formation and distortions may take place after welding. Friction Stir Welding (FSW) may be used for joining stainless steels in a single pass and for optimising microstructure and mechanical properties of the processed region. The application of FSW to the widely used AISI304 stainless steel is investigated in food implants. The mechanical properties together with corrosion resistance and surface finishing are characterized. A high energy input is chosen for the welding (2000 rpm tool rotational speed and 50 mm/min advancing speed). The stirred zone (SZ) is characterized by optical microscopy. Vickers microhardness in the SZ results 37% higher than in the base material. Tensile tests highlight elongations up to 40% keeping maximum stress values at 600 MPa. All samples pass accelerated corrosion tests that simulate 20 years of cleaning cycles in a typical food implant.



Labus Zlatanovic, Danka; Balos, Sebastian; Bergmann, Jean Pierre; Rasche, Stefan; Pecanac, Milan; Goel, Saurav
Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (AA 5754 H111) aluminium sheets. - In: Materials, ISSN 1996-1944, Bd. 14 (2021), 5, 1157, insges. 23 S.

https://doi.org/10.3390/ma14051157
Busse, Christian; Tsivilskiy, Ilya; Hildebrand, Jörg; Bergmann, Jean Pierre
Numerical modeling of an inductively coupled plasma torch using OpenFOAM. - In: Computers & fluids, Bd. 216 (2021), 104807

A customized code using the free and fully open-source CFD software package OpenFOAM was developed to simulate a two-dimensional axisymmetric model of an inductively coupled plasma torch. To efficiently calculate the high-frequency magnetic fields generated by the inductive coil, a technique based on the vector potential formulation of Maxwell's equations was implemented using the block coupled matrix solver provided by the foam-extend toolbox. While the fluid equations for the inner torch region are solved under the assumption of a laminar flowing argon plasma under atmospheric pressure and local thermodynamic equilibrium conditions, the electromagnetic equations are solved on an overlapping mesh extended far outside the torch. Moreover, a novel technique for initializing the plasma solver by separately precomputing the velocity and temperature fields is presented. Using this approach our plasma solver can run in both steady-state and transient modes. The implementation has been validated by means of analytical methods, and the simulation results of the Tekna-PL50 plasma torch have been compared against literature data. The results obtained using the OpenFOAM code are in good agreement with those of the commercial CFD codes.



https://doi.org/10.1016/j.compfluid.2020.104807
Schricker, Klaus; Bergmann, Jean Pierre; Hopfeld, Marcus; Spieß, Lothar
Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum. - In: Welding in the world, ISSN 1878-6669, Bd. 65 (2021), 4, S. 699-711

This paper examined the joining zone between semi-crystalline polyamide 6 and aluminum EN AW 6082 in laser-based joining and evaluated the mechanical properties of the joint. The joint tests were carried out in overlap configuration and a characterized in terms of energy per unit length. The mechanical properties were examined to the point of cohesive failure. An increasing energy per unit length resulted in a reduced crosshead displacement in short-term testing and a decreased fatigue strength. Further material testing was carried out locally at various positions within the joining zone. The mechanical properties were correlated with results of a hardness test, thermoplastic morphology, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). By combining the findings with heat-treated samples at elevated temperatures, secondary crystallization was identified and evidenced as a primary effect among the changes in mechanical properties due to the heat treatment of the thermoplastic material.



https://doi.org/10.1007/s40194-020-01048-1
Köhler, Tobias; Grätzel, Michael; Bergmann, Jean Pierre
Influence of different Ni coatings on the long-term behavior of ultrasonic welded EN AW 1370 cable/EN CW 004A arrestor dissimilar joints. - In: Welding in the world, ISSN 1878-6669, Bd. 65 (2021), 3, S. 429-440

The increasing demand for energy-efficient vehicles requires suitable methods for cost and weight reduction. This can be achieved by the replacement of copper by aluminum, in particular for the on-board power systems. However, the complete substitution is restricted by the mechanical and physical material properties of aluminum as well as challenges in the aluminum copper interface. The challenges concern the corrosion vulnerability and the occurrence of brittle intermetallic compounds (IMC) which can negatively influence the mechanical properties and the electrical conductivity. Therefore, current investigations focus on the one hand on the realization of dissimilar aluminum copper joints by suitable joining technologies, like ultrasonic welding, and on the other hand on the assurance of a sufficient prevention against harmful corrosion effects. In cases where the joint cannot be protected against corrosion by sealing, nickel coatings can be used to protect the joint. In the present study, the influence of electroless, electroplated, and sulfamate nickel coatings was investigated regarding the long-term stability. The joints were performed as industry-related arrester connections, consisting of EN AW 1370 cables and EN CW 004A terminals. The samples were exposed to corrosive as well as electrical, thermal, and mechanical stress tests according to current standards and regulations.



https://doi.org/10.1007/s40194-020-01030-x