Konferenzbeiträge ab 2018

Anzahl der Treffer: 1327
Erstellt: Sun, 28 Apr 2024 20:47:19 +0200 in 0.0688 sec


Konrad, Johannes; Rothleitner, Christian; Kloß, Jonas; Fröhlich, Thomas
A vertically positionable permanent magnet system for the Planck-Balance. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 131-132

The Planck-Balance is a compact version of a Kibble balance, allowing a direct measurement of mass by means of electromagnetic force compensation (EMFC). This means that the effects of deformation have to be considered. The vertical position adjustment of the coil, which is discussed in this article, can reduce many errors, such as errors due to deformations during weighing, which lead to a non-proportional correlation between the current in the compensation coil and the compensated mass. In our setup, these errors can be up to about 8 ppm in the maximum case. In addition, there are other problems such as higher order harmonics in the velocity mode, which can be reduced.



https://doi.org/10.5162/SMSI2023/B6.4
Kissinger, Thomas;
Multiplexing interferometers to provide novel capabilities for nanometrology. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 239-240

Multiplexing interferometers within a single beam, based on their optical path difference, using laser wavelength-modulated signal processing techniques such as the range-resolved interferometry method, allows for interesting new capabilities in precision interferometry. For example, these include single-beam differential interferometry or position encoders with multiple degrees-of-freedoms using only a single fibre-coupled access port.



https://doi.org/10.5162/SMSI2023/D6.1
Ortlepp, Ingo;
Current advances in 3D tip- and laser-based nanofabrication in extended working areas. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 245-246

Nanotechnology is affecting almost all areas of life, from semiconductor industry to optics, medicine and agriculture. Classical methods for sensing, measuring and fabricating on the nanoscale are faced with new challenges: features are getting smaller and the variety of structures and materials is increasing. Thus, many new techniques are developed in this field. Research at the Technische Universität Ilmenau aims to support transferring these new technologies to industrial scale for future application. The focus is on tip- and laser-based processes together with devices for nanometer positioning.



https://doi.org/10.5162/SMSI2023/D6.4
Rogge, Norbert; Fröhlich, Thomas
Actuator design considerations for the Planck-Balance. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 129-130

The paper presents crucial design considerations for the actuators in a table-top Kibble balance, especially its influence on the uncertainty contribution by the voltage measurements. The resulting contribution is exemplary shown for the PB2 version of the Planck-Balance and constraints are discussed that limit the possibilities to optimize the geometric factor of the measurement actuator.



https://doi.org/10.5162/SMSI2023/B6.3
Hossain, Mohammad Mobassar; Schlag, Leslie; Wolz, Benedikt; Ziegler, Mario; Nahrstedt, Helene; Reichel, Helene; Pezoldt, Jörg; Jacobs, Heiko O.
Ruthenium and rhodium vertical interconnect formation using gas phase electrodeposition. - In: 2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM) (IITC/MAM), (2023), insges. 3 S.

This paper presents localized gas phase electrodeposition of ruthenium (Ru) and rhodium (Rh) species into vertical interconnects. A spark discharge generates gas ions and charged species of the desired metal, which are transported by a gas flow and form a plasma jet. Prior lateral nano-bridge growth is further developed and enables the localized metal species deposition into vertical interconnect openings. This approach is additive and saves rare materials during processing. The process allows precise adjustment of the diameter, airgap size, and top finishing bump of the vertical interconnect.



https://doi.org/10.1109/IITC/MAM57687.2023.10154806
Marotta, Raffaele; Strano, Salvatore; Terzo, Mario; Tordela, Ciro; Ivanov, Valentin
Camber angle estimation based on physical modelling and artificial intelligence. - In: 2023 International Conference on Control, Automation and Diagnosis (ICCAD), (2023), insges. 7 S.

The camber angle of a wheel represents one of the most important kinematic parameters in the study of the interaction between tire and road. It influences the forces that the vehicle exchanges with the road and consequently the vehicle's performance in terms of handling, holding and ride comfort. Control systems for these angles can improve in these aspects. Consequently, the measurement of the camber angles represents an aspect of primary importance. There are many solutions for measuring camber angles when the vehicle is not in motion, but developments must be made for measuring these angles during manoeuvres. Direct measurement of camber angles requires the insertion of sensors inside the wheel which increase complexity and production costs. This paper proposes a methodology for estimating such angles that makes combined use of a double-track vehicle model, non-linear Kalman filter and artificial intelligence. It exploits simple measures to be made on a road vehicle: longitudinal velocity, yaw rate, steering angle of the wheels and rotational speed of the wheels. The estimator was tested through three manoeuvres: a lap on the Hockenheim circuit, a slalom and a constant radius cornering. The metrics used to describe the error: are Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE).



https://doi.org/10.1109/ICCAD57653.2023.10152425
Schulze, Sven; Arumugam, Kumar; Schlamminger, Stephan; Theska, René; Shaw, Gordon
Capacitance analysis of a shielded sphere-flat capacitor in a high precision electrostatic force balance. - In: Proceedings of the 23rd International Conference of the European Society for Precision Engineering and Nanotechnology, (2023), S. 449-452

Oertel, Erik; Manske, Eberhard
Characterization of micro spheres through AFM surface scans. - In: Proceedings of the 23rd International Conference of the European Society for Precision Engineering and Nanotechnology, (2023), S. 385-388

Konrad, Johannes; Rothleitner, Christian; Kloß, Jonas; Fröhlich, Thomas
Measurement errors in the Planck-Balance caused by alternating forces. - In: Proceedings of the 23rd International Conference of the European Society for Precision Engineering and Nanotechnology, (2023), S. 343-346

Torres Melgarejo, Mario André; Wittke, Martin; Theska, René
Investigation of the sensitivity of a high-precision weighing cell to disturbances caused by the adjustment system. - In: Proceedings of the 23rd International Conference of the European Society for Precision Engineering and Nanotechnology, (2023), S. 223-224