Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1558
Erstellt: Wed, 21 Feb 2024 23:43:16 +0100 in 0.0994 sec


Leineweber, Johannes; Hebenstreit, Roman; Häcker, Annika-Verena; Meyer, Christoph; Füßl, Roland; Manske, Eberhard; Theska, René
Characterization of a parallel kinematics actuated in situ reference measurement system for 5D-nano-measurement and nano-fabrication applications :
Charakterisierung eines parallelkinematisch aktuierten In-situ-Referenzmesssystems für 5D-Nanomess- und Fabrikationsanwendungen. - In: Technisches Messen, ISSN 2196-7113, Bd. 91 (2024), 2, S. 102-115

Die stetig voranschreitende Entwicklung im Bereich der Fertigung optischer und elektronischer Elemente auf Basis von Nanotechnologien führt seit Jahren zu einer steigenden Nachfrage nach hochpräzisen Nanomess- und Nanofabrikationsmaschinen (The International Roadmap For Devices And Systems, IEEE, 2020; C. Grant Willson and B. J. Roman, “The future of lithography: SEMATECH litho forum 2008,” ASC Nano , vol. 2, no. 7, pp. 1323-1328, 2008). Als technologisch besonders anspruchsvoll hat sich dabei die Fabrikation auf stark geneigten, gekrümmten, asphärischen und freigeformten Oberflächen herausgestellt (R. Schachtschneider, et al., “Interlaboratory comparison measurements of aspheres,” Meas. Sci. Technol. , vol. 29, no. 13pp, p. 055010, 2018). Aufbauend auf den zukunftsweisenden Entwicklungen der Nanopositionier- und Nanomessmaschine 1 (NMM-1) (G. Jäger, E. Manske, T. Hausotte, and J.-J. Büchner, “Nanomessmaschine zur abbefehlerfreien Koordinatenmessung,” tm - Tech. Mess. , vol. 67, nos. 7-8, pp. 319-323, 2000) und der Nanopositionier- und Nanomessmaschine 200 (NPMM-200) (E. Manske, G. Jäger, T. Hausotte, and F. Balzer, “Nanopositioning and Nanomeasuring Machine NPMM-200 - sub-nanometre resolution and highest accuracy in extended macroscopic working areas,” in Euspen’s 17th International Conference , 2017), wird an der Technischen Universität Ilmenau seit mehreren Jahren an Konzepten für NPMM mit erhöhtem Freiheitsgrad geforscht (F. Fern, “Metrologie in fünfachsigen Nanomess- und Nanopositioniermaschinen,” Ph.D. thesis, Technische Universität Ilmenau, 2020; R. Schienbein, “Grundlegende Untersuchungen zum konstruktiven Aufbau von Fünfachs-Nanopositionier- und Nanomessmaschinen,” Ph.D. thesis, Technische Universität Ilmenau, 2020). So besitzt der seit 2020 entwickelte Demonstrator NMM-5D (J. Leinweber, C. Meyer, R. Füßl, R. Theska, and E. Manske, “Ein neuartiges Konzept für 5D Nanopositionier-, Nanomess-, und Nanofabrikationsmaschinen,” tm - Tech. Mess. , vol. 37, nos. 1-10, 2022) neben dem kartesischen Verfahrbereich von 25mm × 25mm × 5mm zusätzlich ein Rotationsvermögen des Tools von 360˚ sowie ein Neigungsvermögen von 50˚. Imfolgenden Artikel wird davon ausgehend die mechanische und metrologische Charakterisierung der parallelkinematisch aktuierten Rotationserweiterung präsentiert. Hierbei konzentrieren sich durchgeführte Untersuchungen primär auf die kinematisch verursachten Abweichungen des Tool Center Point (TCP) sowie die Detektierung dieser Abweichungen mit einem interferometrischen In-situ -Referenzmesssystem. Darüber kann perspektivisch eine geregelte Kompensation der auftretenden TCP-Abweichungen erfolgen.



https://doi.org/10.1515/teme-2023-0109
Kreipe, Stefan; Helbig, Thomas; Witte, Hartmut; Schumann, Nikolaus; Anders, Christoph
Comparison of sEMG onset detection methods for occupational exoskeletons on extensive close-to-application data. - In: Bioengineering, ISSN 2306-5354, Bd. 11 (2024), 2, 119, S. 1-13

The design of human-machine interfaces of occupational exoskeletons is essential for their successful application, but at the same time demanding. In terms of information gain, biosensoric methods such as surface electromyography (sEMG) can help to achieve intuitive control of the device, for example by reduction of the inherent time latencies of a conventional, non-biosensoric, control scheme. To assess the reliability of sEMG onset detection under close to real-life circumstances, shoulder sEMG of 55 healthy test subjects was recorded during seated free arm lifting movements based on assembly tasks. Known algorithms for sEMG onset detection are reviewed and evaluated regarding application demands. A constant false alarm rate (CFAR) double-threshold detection algorithm was implemented and tested with different features. Feature selection was done by evaluation of signal-to-noise-ratio (SNR), onset sensitivity and precision, as well as timing error and deviation. Results of visual signal inspection by sEMG experts and kinematic signals were used as references. Overall, a CFAR algorithm with Teager-Kaiser-Energy-Operator (TKEO) as feature showed the best results with feature SNR = 14.48 dB, 91% sensitivity, 93% precision. In average, sEMG analysis hinted towards impending movements 215 ms before measurable kinematic changes.



https://doi.org/10.3390/bioengineering11020119
Čindrak, Saud; Donvil, Brecht; Lüdge, Kathy; Jaurigue, Lina
Enhancing the performance of quantum reservoir computing and solving the time-complexity problem by artificial memory restriction. - In: Physical review research, ISSN 2643-1564, Bd. 6 (2024), 1, 013051, S. 013051-1-013051-11

We propose a scheme that can enhance the performance and reduce the computational cost of quantum reservoir computing. Quantum reservoir computing is a computing approach which aims at utilizing the complexity and high dimensionality of small quantum systems, together with the fast trainability of reservoir computing, in order to solve complex tasks. The suitability of quantum reservoir computing for solving temporal tasks is hindered by the collapse of the quantum system when measurements are made. This leads to the erasure of the memory of the reservoir. Hence, for every output, the entire input signal is needed to reinitialize the reservoir, leading to quadratic time complexity. Another critical issue for the hardware implementation of quantum reservoir computing is the need for an experimentally accessible means of tuning the nonlinearity of the quantum reservoir. We present an approach which addresses both of these issues. We propose artificially restricting the memory of the quantum reservoir by only using a small number inputs to reinitialize the reservoir after measurements are performed. This strongly influences the nonlinearity of the reservoir response due to the influence of the initial reservoir state, while also substantially reducing the number of quantum operations needed to perform time-series prediction tasks due to the linear rather than quadratic time complexity. The reinitialization length therefore provides an experimental accessible means of tuning the nonlinearity of the response of the reservoir, which can lead to significant task-specific performance improvement. We numerically study the linear and quadratic algorithms for a fully connected transverse Ising model and a quantum processor model.



https://doi.org/10.1103/PhysRevResearch.6.013051
Höhne, Günter; Weber, Christian; Husung, Stephan
Ilmenau’s contributions to Design Science. - In: Design science, ISSN 2053-4701, Bd. 10 (2024), e2, S. 1-73

Ilmenau is a relatively small town in a beautiful landscape, close to the centre of Germany. Since 1894 it has been the home of a Technical College which after World War II and through some permutations became today’s Technische Universität Ilmenau. For 70 years the university has contributed to Design Science. It is interesting to note that the fundamentals were developed in practice, at the Carl Zeiss company in Jena; it was only later that the new ideas were further developed for academic research and teaching in Ilmenau. The origins at Zeiss Jena still account for the main application area at Technische Universität Ilmenau today: Precision Engineering which, in addition to mechanical, has always included electric, electronic, control, software, and even optical components (“mechatronics” before the term was coined). This article - written by three (out of four in total) of the professors who were and are, respectively, in charge over almost 50 out of the 70 years - tells the story of Design Science in Ilmenau: background, beginnings, development, contributions to research, teaching, and transfer to industry. As Ilmenau was situated in the German Democratic Republic (“East Germany”) between 1949 and 1990, the story is not free of political and societal implications, some of them quite surprising.



https://doi.org/10.1017/dsj.2023.33
Steck, Marco; Husung, Stephan
Surrogate-based calculation method for robust design optimization considering the fatigue probability for variable service loads of eBike drive units. - In: Designs, ISSN 2411-9660, Bd. 8 (2024), 1, 4, S. 1-39

This paper proposes a robust design-optimization approach for eBike drive units that incorporates the highly variable driver-dependent load collectives and system conditions into a fatigue calculation. In an initial step, the relevant influences and loads on the investigated system are examined and reviewed in relation to the current normative requirements. From a methodical viewpoint, this paper presents a surrogate-based simulation-based approach to assess reliability across the entire geometry according to a probabilistic fatigue calculation. The probabilistic evaluation considers the several measured load collectives of different drivers and driving scenarios to enable a robust and type-oriented bike design. In addition to methods of fatigue calculation, this approach also includes common methods of order reduction and reliability-based design optimization. To avoid additional uncertainties in the calculation, this approach considers a complex critical-plane-based multiaxial-fatigue calculation to correctly evaluate the multiaxial and non-proportional stress state across the whole geometry. A data-based surrogate model that supports the fatigue calculation by predicting the load across the given uncertainties is the key to the efficient assessment of the service life of the eBike. Lastly, the identified uncertainties in the design of eBike drive units are investigated and evaluated by this method.



https://doi.org/10.3390/designs8010004
Dong, Yulian; Huo, Jingyao; Xu, Changfan; Ji, Deyang; Zhao, Huaping; Li, Liqiang; Lei, Yong
Research progress on vanadium sulfide anode materials for sodium and potassium-ion batteries. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. n/a (2024), n/a, 2301840, S. 1-28

Considering environmental changes and the demand for more sustainable energy sources, stricter requirements have been placed on electrode materials for sodium and potassium-ion batteries, which are expected to provide higher energy and power density while being affordable and sustainable. Vanadium sulfide-based materials have emerged as intriguing contenders for the next generation of anode materials due to their high theoretical capacity, abundant reserves, and cost-effectiveness. Despite these advantages, challenges such as limited cycle life and restricted ion diffusion coefficients continue to impede their effective application in sodium and potassium-ion batteries. To overcome the limitations associated with electrochemical performance and circumvent bottlenecks imposed by the inherent properties of materials at the bulk scale, this review comprehensively summarizes and analyzes the crystal structures, modification strategies, and energy storage processes of vanadium sulfide-based electrode materials for sodium and potassium-ion batteries. The objective is to guide the development of high-performance vanadium-based sulfide electrode materials with refined morphologies and/or structures, employing environmentally friendly and cost-efficient methods. Finally, future perspectives and research suggestions for vanadium sulfide-based materials are presented to propel practical applications forward.



https://doi.org/10.1002/admt.202301840
Koch, Juliane; Liborius, Lisa; Kleinschmidt, Peter; Prost, Werner; Weimann, Nils; Hannappel, Thomas
Impact of the tip-to-semiconductor contact in the electrical characterization of nanowires. - In: ACS omega, ISSN 2470-1343, Bd. 9 (2024), 5, S. 5788-5797

Well-defined semiconductor heterostructures are a basic requirement for the development of high-performance optoelectronic devices. In order to achieve the desired properties, a thorough study of the electrical behavior with a suitable spatial resolution is essential. For this, various sophisticated tip-based methods can be employed, such as conductive atomic force microscopy or multitip scanning tunneling microscopy (MT-STM). We demonstrate that in any tip-based measurement method, the tip-to-semiconductor contact is decisive for reliable and precise measurements and in interpreting the properties of the sample. For that, we used our ultrahigh-vacuum-based MT-STM coupled in vacuo to a reactor for the preparation of nanowires (NWs) with metal organic vapor phase epitaxy, and operated our MT-STM as a four-point nanoprober on III-V semiconductor NW heterostructures. We investigated a variety of upright, free-standing NWs with axial as well as coaxial heterostructures on the growth substrates. Our investigation reveals charging currents at the interface between the measuring tip and the semiconductor via native insulating oxide layers, which act as a metal-insulator-semiconductor capacitor with charging and discharging conditions in the operating voltage range. We analyze in detail the observed I-V characteristics and propose a strategy to achieve an optimized tip-to-semiconductor junction, which includes the influence of the native oxide layer on the overall electrical measurements. Our advanced experimental procedure enables a direct relation between the tip-to-NW junction and the electronic properties of as-grown (co)axial NWs providing precise guidance for all future tip-based investigations.



https://doi.org/10.1021/acsomega.3c08729
Li, Zirui; Faheem, Faizan; Husung, Stephan
Collaborative Model-based Systems Engineering using Dataspaces and SysML v2. - In: Systems, ISSN 2079-8954, Bd. 12 (2024), 1, 18, S. 1-22

Collaborative Model-based Systems Engineering between companies is becoming increasingly important. The utilization of the modeling possibilities of the standard language SysML v2 and the multilateral data exchange via Dataspaces open new possibilities for efficient collaboration. Based on systemic approaches, a modeling concept for decomposing the system into sub-systems is developed as a basis for the exchange. In addition, based on the analysis of collaboration processes in the context of Systems Engineering, an architectural approach with a SysML editor and Dataspace for the exchange is elaborated. The architecture is implemented on the basis of open-source solutions. The investigations are based on an application example from precision engineering. The potential and challenges are discussed.



https://doi.org/10.3390/systems12010018
Liu, Fengli; Yan, Yong; Chen, Ge; Wang, Dong
Recent advances in ambient electrochemical methane conversion to oxygenates using metal oxide electrocatalysts. - In: Green chemistry, ISSN 1463-9270, Bd. 26 (2024), 2, S. 655-677

To reach a decarbonized future, the conversion of greenhouse gases into green fuels and valuable chemicals is of crucial importance. Methane emissions are the second most significant contributor to global warming. Recent advances in electrocatalytic partial oxidation of methane to high-value fuels at ambient temperatures promise to sidestep the requirement of high temperature in conventional thermal catalysis and provide a revolutionary, sustainable, and decentralized alternative to flaring. Electrocatalysts that can selectively produce valuable compounds from methane under mild conditions are essential for commercialization. This review covers current developments in the electrochemical partial oxidation of methane to oxygenates, with an emphasis on metal oxide electrocatalysts. The regularly deployed strategies, including doping and interface engineering, are systematically reviewed in detail. In addition, the design of the electrolytic cell, the electrolyte, time, potential, and temperature are examined thoroughly and discussed.



https://doi.org/10.1039/D3GC03513A
Horak, Iryna; Skaterna, Tetiana; Lugovskyi, Serhii; Krysiuk, Iryna; Tykhomyrov, Artem; Prylutska, Svitlana; Tverdokhleb, Nina; Senenko, Anton; Cherepanov, Vsevolod; Drobot, Liudmyla; Matyshevska, Olga; Ritter, Uwe; Prylutskyy, Yuriy
Antimetastatic lung cancer therapy using alkaloid Piperlongumine noncovalently bound to С60 fullerene. - In: Journal of drug delivery science and technology, Bd. 92 (2024), 105275, S. 1-10

A novel nanoformulation, C60 fullerene loaded with a plant alkaloid Piperlongumine (PL) molecules (C60-PL nanocomplex), as a potential drug for the treatment of highly metastatic lung cancer was created and characterized by using ultrasonic technology, computer simulation, atomic force and scanning tunneling microscopy. The aim of the study was to evaluate the antimetastatic potential of PL alone and the C60-PL nanocomplex using Lewis lung carcinoma (LLC) cell line as a model. Evidence has been obtained that the 2:1C60-PL nanocomplex is a potent agent capable of effectively reducing the survival, migration and invasion of LLC cells in vitro, as well as tumor growth and metastasis in vivo compared to free PL. These effects in cell behavior were shown to be associated with an increased Bax expression and high level of cleaved PARP confirming the proapototic potential of C60-PL nanocomplex as well as down-regulation of the mRNA of epithelial-mesenchymal transition regulator Twist1 and cancer stem cell marker CD44, a reduced level of phosphorylated mTOR and adaptor protein Ruk/CIN85. Histological analysis of the lung tissue of LLC-bearing mice showed that in animals that received the C60-PL nanocomplex, the regression of metastases prevailed over their growth. The obtained results allow to conclude that the proposed C60-PL nanocomplex represents a promising drug for the treatment of metastatic lung cancer.



https://doi.org/10.1016/j.jddst.2023.105275