Bifurcations from codimension-one D4m-equivariant homoclinic cycles. - Ilmenau, 2022. - 1 Online-Ressource (277 Seiten)
Technische Universität Ilmenau, Dissertation 2022
Das Thema dieser Arbeit ist eine detaillierte Beschreibung der Dynamik in der Nähe von D4m-symmetrischen relativen homoklinen Zykeln mit Hilfe von Lins Methode. Die homoklinen Zykel haben die Kodimension-1, d.h. wir beobachten ihre generische Entfaltung innerhalb einer einparametrigen Familie. Sie bestehen aus mehreren Trajektorien, die sowohl für positive als auch negative Zeit derselben hyperbolischen Gleichgewichtslage zustreben (Homokline Trajektorien) und die alle durch die von einer endlichen Gruppe induzierten Symmetrie voneinander abhängig sind. Wir nehmen reelle führende Eigenwerte und homokline Trajektorien an, die sich der Gleichgewichtslage entlang führender Richtungen nähern. Die Homoklinen befinden sich in flussinvarianten Unterräumen. Insbesondere für solche homoklinen Zykel in Differentialgleichungen mit Dk-Symmetrie (Dk ist die Symmetriegruppe eines regelmäßigen k-Ecks in der Ebene), bei denen k ein Vielfaches von 4 ist, stehen einige dieser flussinvarianten Unterräume senkrecht zueinander. Dies impliziert das Verschwinden der typischerweise auftretenden Terme führender exponentieller Konvergenzordnung in einigen der aus Lins Methode gewonnenen Bestimmungsgleichungen. Um eine genaue Beschreibung der nichtwandernden Dynamik eines solchen homoklinen Zykels zu geben, d.h. eine Beschreibung der Lösungen, die in der Umgebung des Zykels sowohl im Phasen- als auch im Parameterraum verbleiben, sind weitere Informationen über die Restterme in den Bestimmungsgleichungen erforderlich. In dieser Arbeit stellen wir eine verfeinerte Darstellung der Restterme in den Bestimmungsgleichungen vor und identifizieren zwei weitere Terme mit nächsthöheren exponentiellen Konvergenzraten. Darauf aufbauend diskutieren wir die Lösbarkeit der resultierenden Bestimmungsgleichungen für homokline Zykel in R4. Dabei sind zwei Fälle zu unterscheiden, die vom Größenverhältnis der beiden neuen Terme abhängen. In einem Fall beobachten wir einen endlichen Subshift. Im anderen Fall erweist sich die Analysis als schwieriger, so dass wir die Untersuchung auf periodische Lösungen beschränken.
The spectra of indefinite singular Sturm-Liouville operators. - Ilmenau : Universitätsbibliothek, 2021. - 1 Online-Ressource (92 Seiten)
Technische Universität Ilmenau, Dissertation 2021
In der vorliegenden Arbeit werden die spektralen Eigenschaften singulärer Sturm-Liouville-Differentialoperatoren der Form Af=1/r(-(pf')' + qf) mit reellwertigen Koeffizienten p, q und r untersucht. Hierbei betrachten wir indefinite Gewichtsfunktionen r. Basierend auf Erkenntnissen der relativen Oszillationstheorie sowie der Floquet-Theorie für periodische Sturm-Liouville-Operatoren werden Kriterien nachgewiesen, welche die Stabilität der essentiellen Spektren unter Störung der Koeffizienten sicherstellen. Außerdem wird die Häufung von Eigenwerten in den Lücken des essentiellen Spektrums untersucht. Wir formulieren Bedingungen, die eine Häufung der Eigenwerte innerhalb einer Lücke implizieren, bzw. eine Häufung ausschließen. Weiterhin werden die nichtreellen Spektren indefiniter Sturm-Liouville-Operatoren untersucht. Hierbei werden Schranken der nichtreellen Eigenwerte hinsichtlich ihres Absolutbetrages and Imaginärteils bestimmt. Der Nachweis der Schranken beruht auf einer gewissenhaften Analyse der zugehörigen Eigenfunktionen.
https://doi.org/10.22032/dbt.50260
Spectral perturbation & optimization of matrix pencils. - Ilmenau : Universitätsverlag Ilmenau, 2021. - 1 Online-Ressource (130 Seiten)
Technische Universität Ilmenau, Dissertation 2021
In dieser Arbeit untersuchen wir lineare differentiell-algebraischen Gleichungen (DAEs). Die Lösungen solcher DAEs werden durch Eigenwerte und Hauptvektoren von Matrixbüscheln beschrieben. Hierdurch kann insbesondere das qualitative Verhalten der Lösungen durch eine gezielte Veränderung (oder Störung), hinsichtlich gewisser Robustheits- oder Stabilitätsvorgaben, verbessert werden. Wir untersuchen zunächst das Verhalten der Eigenwerte und Hauptvektoren von Matrixbüscheln unter Störungen niedrigen Ranges. Zur Beschreibung des Störverhaltens nutzen wir einen neuartigen Zugang mit linearen Relationen und einem Zusammenspiel der Segre und Weyr Charakteristiken. Von besonderem Interesse ist dabei das Problem der Eigenwertplatzierbarkeit durch Störungen niedrigen Ranges. Hierbei wird untersucht, ob eine vorgegebene Eigenwertlage durch eine gezielte Veränderung der DAE erreicht werden kann. Durch die Vorgabe der Eigenwertlage wird indirekt das Stabilitätsverhalten der DAE beeinflusst. Vereinfacht gesagt wird in dieser Arbeit gezeigt, dass jede vorgegebene Eigenwertlage durch eine Störung mit Rang eins realisierbar ist. Als Anwendung betrachten wir eine Designoptimierung von Operationsverstärkern, welche in den letzten Jahren in der Arbeitsgruppe um Ralf Sommer (TU Ilmenau & Institut für Mikroelektronik- und Mechatronik-Systeme) entwickelt wurde. Hierbei wurden gezielt Kapazitäten in die Verstärkerschaltung eingefügt, um ihr Übertragungsverhalten nach gewissen Vorgaben zu beeinflussen. Dabei entspricht jede neue Kapazität einer Störung der DAE vom Rang eins. In diesem Kontext sind die Platzierungsergebnisse jedoch nur bedingt geeignet. Hier treten zusätzliche Einschränkungen der erlaubten Modifikationen der DAE auf, da nur sehr wenige Störungen als Kapazitäten in der Schaltung realisiert werden können. Bei der Designoptimierung ist man zudem an kleinstmöglichen Veränderungen der DAE interessiert, um die Produktionskosten des Verstärkers zu minimieren. Daher untersuchen wir im zweiten Teil der Arbeit, wie platzierende Störungen mit kleinstmöglicher Norm sowie mit vorgegebener Struktur bestimmt werden können. Dieses Vorgehen bezeichnen wir als Spektrale Optimierung. Zur Bestimmung einer approximativen Lösung dieses Optimierungsproblems wurde ein Algorithmus entwickelt, welcher dann bei der Designoptimierung von zwei industriellen Verstärkerschaltungen eingesetzt wird.
https://doi.org/10.22032/dbt.49285
Colorings of graphs, digraphs, and hypergraphs. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (viii, 185 Seiten)
Technische Universität Ilmenau, Dissertation 2020
Brooks' Theorem ist eines der bekanntesten Resultate über Graphenfärbungen: Sei G ein zusammenhängender Graph mit Maximalgrad d. Ist G kein vollständiger Graph, so lassen sich die Ecken von G so mit d Farben färben, dass zwei benachbarte Ecken unterschiedlich gefärbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem für Färbungen von Hypergraphen und gerichteten Graphen. Eine Färbung eines Hypergraphen ist eine Färbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. Kernstück ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1, ,f_p) von Funktionen, welche von V(H) in die natürlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1, ,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthält, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+ +f_p(v) \geq d_H(v) für alle v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die Ausnahmefälle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-Färbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht Färbungen gerichteter Graphen. Eine azyklische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische Färbungsresultate übertragen. Dazu zählt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-Färbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-Färbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen für diese angegeben und die gerichtete Version des Satzes von Hajós bewiesen.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000522
Rooted structures in graphs : a project on Hadwiger's conjecture, rooted minors, and Tutte cycles. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (viii, 131 Blätter)
Technische Universität Ilmenau, Dissertation 2020
Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen für Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthält und sonst nichts. Für einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthält. Sei T eine Transversale einer Färbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollständigen, in T gewurzelten Minors zu gewährleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort würde Hadwigers Vermutung für eindeutig färbbare Graphen bestätigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhängende Teilmengen der Knotenmenge einen hoch zusammenhängenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von Hamiltonizität in planaren und nicht-planaren Graphen behandelt.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000294
Nonconvex and mixed integer multiobjective optimization with an application to decision uncertainty. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (iii, 163, XXXV Seiten)
Technische Universität Ilmenau, Dissertation 2019
Multikriterielle Optimierungprobleme sind in diversen Anwendungsgebieten wie beispielsweise in den Wirtschafts- oder Ingenieurwissenschaften zu finden. Da hierbei mehrere konkurrierende Zielfunktionen auftreten, ist die Lösungsmenge eines derartigen Optimierungsproblems im Allgemeinen unendlich groß und kann meist nicht in analytischer Form berechnet werden. In dieser Dissertation werden neue Branch-and-Bound basierte Algorithmen zur Lösung verschiedener Klassen von multikriteriellen Optimierungsproblemen entwickelt und vorgestellt. Der Branch-and-Bound Ansatz ist eine typische Methode der globalen Optimierung. Einer der neuen Algorithmen löst glatte multikriterielle nichtkonvexe Optimierungsprobleme mit konvexen Nebenbedingungen, während ein zweiter zur Lösung multikriterieller gemischt-ganzzahliger konvexer Optimierungsprobleme dient. Beide Algorithmen garantieren eine gewisse Genauigkeit der berechneten Lösungen und gehören damit zu den ersten deterministischen Algorithmen ihrer Art. Zusätzlich wird ein Algorithmus zur Berechnung einer Überdeckung der Lösungsmenge multikriterieller Optimierungsprobleme mit Entscheidungsunsicherheit vorgestellt. Alle drei Algorithmen wurden numerisch getestet. Die Ergebnisse werden ebenfalls in dieser Arbeit ausgewertet. Die neuen Algorithmen arbeiten alle mit Boxunterteilungen und nutzen Auswahlregeln, sowie Verwerfungs- und Terminierungskriterien. Dabei spielen gute Verwerfungskriterien eine zentrale Rolle. Diese entscheiden, ob eine Box verworfen werden kann, da diese sicher keine Optimallösung enthält. Die neuen Verwerfungskriterien nutzen Methoden aus der globalen skalarwertigen Optimierung, Approximationstechniken aus der multikriteriellen konvexen Optimierung sowie ein Konzept aus der kombinatorischen Optimierung. Dabei werden stets untere Schranken der Bildmengen konstruiert, die mit bisher berechneten oberen Schranken numerisch verglichen werden können.
https://www.db-thueringen.de/receive/dbt_mods_00040364
Operatortheorie für PT-symmetrische Quantenmechanik. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (88 Seiten)
Technische Universität Ilmenau, Dissertation 2019
Eine Verallgemeinerung der klassischen Quantenmechanik stammt von C. M. Bender und S. Boettcher welche alle Axiome der Quantenmechanik übernahmen, außer der Bedingung, dass der Hamiltonoperator Hermitesch ist. Sie fordern stattdessen, dass der Hamiltonoperator PT-symmetrisch ist. Hier sind P beziehungsweise T die Parität und die Zeitumkehr. Besonderes Augenmerk liegt auf den speziellen Hamiltonoperatoren $$H = p^2 - (iz)^{N+2}, z \in \Gamma$$ auf einer Kontur \Gamma und mit einer natürlichen Zahl N. In der vorliegenden Arbeit behandeln wir die Operatoren H, sowie Hamiltonoperatoren mit einem allgemeineren PT-symmetrischen Potential q, erklärt auf einer keilförmigen Kontur \Gamma. Das dazugehörige Eigenwertproblem hat nach einer Parametrisierung der Kontur die Gestalt $$e^{\mp 2i\phi}w''(x) + q_{\pm}(x)w(x) = \lambda w(x), x \in R_{\pm}.$$ Für das zu H gehörige Problem gilt q_{\pm}(x) = -(ix)^{N+2}e^{\pm(N+2)i\phi}. Dies sind Sturm-Liouville Differentialgleichung auf (-\infty, 0] und [0,\infty), welche wir mit operatortheoretischen Methoden behandeln. Wir geben, mittels WKB-Analysis ein Grenzpunktfallkriterium an und für das spezielle Potential aus H eine vollständige Klassifikation bezüglich der Weylschen Grenzpunkt-/Grenzkreisfall Alternative. Wir definieren die zu den obigen Differentialgleichungen gehörenden minimalen und maximalen Operatoren, welche zueinander adjungiert bezüglich der komplexen Konjugation sind. Diese Operatoren sind auf den reellen Halbachsen definiert und wir fügen diese zu dem minimalen und maximalen Operator auf der ganzen Achse zusammen, die wiederum zueinander adjungiert bezüglich des neuen inneren Produktes [\cdot, \cdot] := (P\cdot, \cdot) sind. Mithilfe einer Kopplungsbedingung G \in C^{2×2} in Null erhalten wir den Operator A_G, eine Einschränkung des maximalen Operators. Diese Bedingung besitzt Freiheitsgrade und wir geben Bedingungen an G an, sodass A_G PT-symmetrisch oder [\cdot, \cdot]-selbstadjungiert ist. Dafür konstruieren wir ein Randtripel. Außerdem berechnen wir die Weyl-Funktion und erhalten somit eine Bedingung für die Existenz und Lage der Eigenwerte von A_G. Mithilfe der WKB-Analysis untersuchen wir diese Bedingung und können Bereiche der komplexen Ebene ausschließen, in denen sich kein Spektrum befindet. Ferner besitzt A_G strukturell dieselben Spektraleigenschaften wie die entsprechenden Operatoren auf den Halbachsen.
https://www.db-thueringen.de/receive/dbt_mods_00040253
A trust region approach for multi-objective heterogeneous optimization. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (iii, 202, XLI Seiten)
Technische Universität Ilmenau, Dissertation 2019
In dieser Arbeit wird ein "Trust-Region" Algorithmus für multikriterielle Optimierungsprobleme mit heterogenen Zielfunktionen vorgestellt. Eine der Zielfunktionen ist eine teure Black-Box-Funktion. Sie ist nicht analytisch gegeben, sondern beispielsweise durch eine Simulation. Für diese Funktion wird angenommen, dass die Berechnung von Funktionswerten zeitaufwändig ist und die Ableitungen nicht mit vertretbarem numerischen Aufwand berechnet werden können. Des Weiteren wird vorausgesetzt, dass die anderen Zielfunktionen analytisch gegeben sind und die Berechnung von Funktionswerten und Ableitungen mit geringem numerischen Aufwand verbunden ist. Es wird ein grundlegender Algorithmus für derartige Optimierungsprobleme vorgestellt. Der Ansatz ist iterativ und nutzt lokale Modellfunktionen und eine im Bildraum definierte Suchrichtung. Der Algorithmus erzeugt eine Folge von Iterationspunkten. Es wird bewiesen, dass der Häufungspunkt dieser Folge ein notwendiges lokales Optimalitätskriterium erfüllt. Darüber hinaus werden verschiedene Modifikationen dieses Algorithmus vorgestellt, welche die Heterogenität der Zielfunktionen weiter nutzen und teilweise mehr als einen Punkt als Ausgabe erzeugen. Des Weiteren werden Ergebnisse von numerischen Tests mit der Grundversion und einigen Modifikationen des Algorithmus präsentiert und diskutiert. Sie bestätigen die theoretischen Resultate und zeigen die Nützlichkeit der Verfahren. Der grundlegende Algorithmus wurde außerdem auf ein Anwendungsproblem der Fluiddynamik angewandt. Die zugehörigen Ergebnisse werden präsentiert und im Rahmen des Anwendungsproblems interpretiert.
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019000059
Projective shapes : topology and means. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (82 Seiten)
Technische Universität Ilmenau, Dissertation 2017
Die projektive Form eines Objektes ist die geometrische Information, die invariant unter projektiven Transformationen ist. Sie tritt natürlicherweise bei der Rekonstruktion von Objekten anhand Fotos unkalibrierter Kameras auf. Wenn ein Objekt als Punktmenge oder Konfiguration von Landmarken im d-dimensionalen reell-projektiven Raum RP(d) beschrieben wird, so ist die Menge der projektiven Formen der Quotientenraum RP(d)^k / PGL(d) und damit kanonisch mit der Quotiententopologie versehen. Auf diesem topologischen Raum der projektiven Formen lassen sich jedoch aus topologischen Gründen viele mathematische Werkzeuge nicht anwenden, ein Phänomen, welches in ähnlicher Form auch bei den Räumen der Ähnlichkeits- bzw. affinen Formen auftritt. In der vorliegenden Arbeit wird die Topologie des projektiven Formenraumes gründlich untersucht, in Hinblick auf die Suche nach einem vernünftigen topologischen Unterraum, der hinreichende Eigenschaften für die Anwendung statistischer Methoden besitzt. Ein Beispiel für einen dieser gutartigen Unterräume ist der Raum der Tyler regulären Formen, der bereits durch Kent und Mardia betrachtet wurde. Deren Ergebnisse werden in dieser Arbeit noch erweitert. Dieser Unterraum ist zwar für einige Dimensionen d und Anzahlen an Landmarken k nicht optimal gewählt, jedoch liefert die sogenannte Tyler-Standardisierung dieser Formen einem sowohl Einbettungen in metrische Räume als auch eine Riemannsche Metrik auf diesem Unterraum. Für eine dieser Einbettungen werden die dazugehörige Fréchet-Erwartungs- sowie Mittelwerte definiert. Während die Konsistenz dieses Mittelwertes leicht zu zeigen ist, ist die Berechnung des extrinsischen Mittelwertes numerisch anspruchsvoll. Als Ersatz wird ein weiterer Erwartungs- bzw. Mittelwert definiert, dessen Berechnung diese Probleme umgeht.
http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000404
Entwurf und Programmierung von numerischen Verfahren und Algorithmen zur Lösung der Boltzmann-Gleichung. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (154 Seiten)
Technische Universität Ilmenau, Dissertation 2017
Die Boltzmann-Gleichung ist eine mesoskopische Gleichung, welche Gas-Strömungen im Übergang zur Teilchendynamik beschreibt. Die Methoden zur Lösung der Boltzmann Gleichung sind ein wichtiges Forschungsthema. In dieser Arbeit interessieren wir uns für die sogenannten deterministischen Schemata, die mit diskreten Geschwindigkeitsmodellen (DVMs) verbunden ist. Zuerst wurden die Grundlagen für DVM zusammengetragen. Dann haben wir für Gase mit kleiner Knudsen-Zahl, in den allgemeinen Fällen, die Konvergenz zu der Maxwell-Verteilung bewiesen. Danach haben wir grundsätzlich eine Detailansicht über die Linearisierung des Stoßoperators und die Eigenschaften der linearisierten Matrix ermittelt. Weiterhin haben wir eine Diskretisierung des Geschwindigkeitsraums (Für 2- und 3-Dimensionen) definiert und einige DVMs untersucht. Außerdem wurden hier die Begriffe "vollständiges Modell" und "vollständige Stoßmenge" definiert und Methoden, um die minimale vollständige Stoßmodelle zu erstellen, entwickelt. Der logisch nachfolgende Schritt ist verschiedene vollständige Stoßmodelle zu entwickeln, sowie untereinander und mit einigen unvollständigen Modellen zu vergleichen, als auch einen genaueren Blick auf die rechnerische Komplexität zu werfen. Danach wurde die Lösung der Boltzmann-Gleichung in den komplexen Randbedingungen untersucht. Die Algorithmen wurden dargestellt, um beliebige Anfangswerte und Randbedingungen verwenden. Man kann durch diese Algorithmen jedes Gasmodell (Ortsraum-Geometrie) in einem Bild darstellen/speichern und in unserem Programm verwenden. Schließlich haben wir numerische Experimente für die Boltzmann-Gleichung durchgeführt. Die Ergebnisse wurden mit denen der physikalischen Experimente und/oder mit den Ergebnissen der anderen numerischen Methoden verglichen.
http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000273