Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1645
Erstellt: Wed, 08 May 2024 23:20:52 +0200 in 0.0614 sec


Fischer, Michael; Gropp, Sebastian; Stegner, Johannes; Frank, Astrid; Hoffmann, Martin; Müller, Jens
Silicon-ceramic composite substrate. - In: IEEE microwave magazine, Bd. 20 (2019), 10, S. 28-43

https://doi.org/10.1109/MMM.2019.2928675
Stehr, Uwe; Hagelauer, Amelie; Hein, Matthias
SiCer: meeting the challenges of tomorrow's complex electronic systems. - In: IEEE microwave magazine, Bd. 20 (2019), 10, S. 26-27, 92
From the guest editors' desk

https://doi.org/10.1109/MMM.2019.2928614
Köhler, Michael; Kluitmann, Jonas; Knauer, Andrea
Metal nano networks by potential-controlled in situ assembling of gold/silver nanoparticles. - In: ChemistryOpen, ISSN 2191-1363, Bd. 8 (2019), 12, S. 1369-1374

https://doi.org/10.1002/open.201900231
Köhler, Tobias; Raab, Mathias; Regensburg, Anna; Bergmann, Jean Pierre
Liquid interlayer formation during torsional ultrasonic welding of EN CW004A and EN AW1050. - In: Welding in the world, ISSN 1878-6669, Bd. 63 (2019), 5, S. 1187-1194

https://doi.org/10.1007/s40194-019-00766-5
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
X-nuclei hyperpolarization for studying molecular dynamics by DNP-FFC. - In: Journal of magnetic resonance, ISSN 1096-0856, Bd. 307 (2019), 106583

https://doi.org/10.1016/j.jmr.2019.106583
Baumer, Christoph; Bund, Andreas; Herrmann, Johannes
A predictive model for the time dependence of concentrations in plating baths. - In: Journal of chemometrics, ISSN 1099-128X, Bd. 33 (2019), 9, S. e3166, insges. 8 S.

https://doi.org/10.1002/cem.3166
Seidl, Lukas; Carstens, Timo; Endrikat, Anna; Engemann, Thomas; Egger, Christiane; Manolova, Mila; Moustafa, Essam; Scharf, Ingolf; Yesilbas, Göktug; Eke, Esther; Martens, Sladjana; Asen, Ludwig; Fischer, Pauline; Ispas, Adriana; Peipmann, Ralf; Ivanov, Svetlozar; Wu, Qiong; Behrens, Niklas; Borisenko, Natalia; Höhlich, Dominik; Dietz, Andreas; Böck, Reinhard; Bund, Andreas; Kühn, Fritz; Lampke, Thomas; Endres, Frank; Schneider, Oliver
Neue galvanotechnische Beschichtungsprozesse aus ionischen Flüssigkeiten. - In: WOMag, ISSN 2195-5891, Bd. 8 (2019), 9, S. 34-36

Engemann, Thomas; Endrikat, Anna; Ispas, Adriana; Bund, Andreas
Electrodeposition of refractory metal alloys by ionic liquids :
Elektrochemische Abscheidung von Refraktärmetalllegierungen aus ionischen Flüssigkeiten. - In: WOMag, ISSN 2195-5891, Bd. 8 (2019), 9, S. 30-32

Böttcher, René; Ispas, Adriana; Bund, Andreas
Elektrochemische Abscheidung von Aluminium und Aluminiumlegierungen aus ionischen Flüssigkeiten. - In: WOMag, ISSN 2195-5891, Bd. 8 (2019), 9, S. 25-27

Scharff, Moritz; Schorr, Philipp; Becker, Tatiana; Resagk, Christian; Alencastre Miranda, Jorge H.; Behn, Carsten
An artificial vibrissa-like sensor for detection of flows. - In: Sensors, ISSN 1424-8220, Bd. 19 (2019), 18, 3892, insges. 16 S.

In nature, there are several examples of sophisticated sensory systems to sense flows, e.g., the vibrissae of mammals. Seals can detect the flow of their prey, and rats are able to perceive the flow of surrounding air. The vibrissae are arranged around muzzle of an animal. A vibrissa consists of two major components: a shaft (infector) and a follicle-sinus complex (receptor), whereby the base of the shaft is supported by the follicle-sinus complex. The vibrissa shaft collects and transmits stimuli, e.g., flows, while the follicle-sinus complex transduces them for further processing. Beside detecting flows, the animals can also recognize the size of an object or determine the surface texture. Here, the combination of these functionalities in a single sensory system serves as paragon for artificial tactile sensors. The detection of flows becomes important regarding the measurement of flow characteristics, e.g., velocity, as well as the influence of the sensor during the scanning of objects. These aspects are closely related to each other, but, how can the characteristics of flow be represented by the signals at the base of a vibrissa shaft or by an artificial vibrissa-like sensor respectively? In this work, the structure of a natural vibrissa shaft is simplified to a slender, cylindrical/tapered elastic beam. The model is analyzed in simulation and experiment in order to identify the necessary observables to evaluate flows based on the quasi-static large deflection of the sensor shaft inside a steady, non-uniform, laminar, in-compressible flow.



https://doi.org/10.3390/s19183892