Dissertationen ab 2018

Anzahl der Treffer: 225
Erstellt: Sun, 28 Apr 2024 20:58:43 +0200 in 0.0734 sec


Wiedemeier, Stefan;
Entwicklung einer tropfenbasierten mikrofluidischen Plattform für das High-Throughput-Screening multizellulärer Systeme. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (XVI, 140 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Im Bereich der tropfenbasierten Mikrofluidik werden medizinische, biologische oder auch chemische Experimente in diskrete Reaktionsräume überführt. Diese als Tropfen bezeichneten Reaktionsräume besitzen als seriell angeordnete Mikroreaktoren ein hohes Anwendungspotenzial, sei es zur Optimierung von Screening-Prozessen für die Medikamentenentwicklung oder zur Manipulation von Zellen und 3D Zellstrukturen. Für solche Anwendungen bieten die derzeit existierenden Konzepte jedoch nicht die erforderliche Zuverlässigkeit und Praktikabilität. Vor allem die Aufrechterhaltung reproduzierbarer und stabiler Prozessbedingungen sind ausschlaggebende Faktoren als Voraussetzung für einen Durchbruch dieser Technologie am Markt. Insbesondere bei Anwendungen mit multizellulären Systemen wie nativen Gewebefragmenten oder in vitro kultivierten Sphäroiden sind besondere Voraussetzungen zu erfüllen. Beispielsweise ist die Verwendung oberflächenaktiver Substanzen (Tenside), die bei der Mehrzahl tropfenbasierter mikrofluidischer Applikationen zur Stabilisierung der Tropfen eingesetzt werden, nachteilig für Untersuchungen dieser Proben. Der Verzicht auf Tenside ist ein wichtiger Schritt in Richtung einer grundlegenden Akzeptanz tropfenbasierter Verfahren. Die in dieser Arbeit präsentierten Ergebnisse zeigen eine Alternative auf, bei der für das Handling und die Kultivierung multizellulärer Systeme auf die Verwendung von Tensiden verzichtet werden kann. Das im Rahmen der Forschungsarbeiten entwickelte technische System beruht auf neuartigen, mikrofluidischen Komponenten, die die hohen Ansprüche für das Handling multizellulärer Systeme erfüllen. Neben der Beschreibung der Systementwicklung steht die Charakterisierung der Einflussfaktoren auf die Tropfengenerierung im Mittelpunkt der Arbeit. Relevante Einflussgrößen wie die Kanalanordnung und deren Oberflächenbeschaffenheit sowie der Einfluss der Volumenströme und unterschiedlicher Probenmedien auf die Tropfengenerierung wurden untersucht. Die Arbeit beschreibt weiterhin die Entwicklung eines biomimetischen Ansatzes zur Steigerung der Stabilität der Tropfengenerierung durch die Verringerung des Adhäsionspotenzials wässriger Proben mit den Kanaloberflächen der Mikrosysteme. Damit ist die im Rahmen dieser Arbeit entwickelte mikrofluidische Plattform insbesondere für Anwendungen im Bereich der Biowissenschaften prädestiniert.



https://www.db-thueringen.de/receive/dbt_mods_00043017
Ibraheam, Maysam;
Design and testing of compact dual-band dual-polarized robust satellite navigation antenna arrays. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (145 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Die steigende Nachfrage nach präzisen Positionierlösungen für hochautomatisiertes Fahren und sicherheitskritische Anwendungen führt zu der Verwendung von Array-basierten Satellitennavigationsempfängern, die aufgrund des verbesserten Diversity-Gewinns und der potentiellen Strahlformungsfähigkeit eine bessere Leistung aufweisen. Die Notwendigkeit, die Robustheit von Navigationsempfängern gegenüber Quellen von Signalstörungen, wie Mehrwegempfang, atmosphärische, sowie Jamming- und Spoofing, zu verbessern, verlangt, den Empfänger weiter auszubauen, um Polarisations- und Frequenz-Diversity auszunutzen. Das hieraus resultierende Design ist durch eine signifikante Zunahme der Hardware- und Softwarekomplexität gekennzeichnet. Diese Komplexität steigt noch mit dem Trend, den Navigationsempfänger zu miniaturisieren, um die Integration in Fahrzeugen oder mobilen Systemen zu erleichtern. Da die gegenseitige Verkopplung zwischen den Antennenelementen eines kompakten Antennen-Arrays steigt, verschlechtert sich deren Strahlungseffizienz und Polarisationsreinheit und damit die Systemrobustheit. In dieser Arbeit wird ein kompaktes, dualbandiges und dualpolarisiertes Antennenarray für einen Navigationsempfänger untersucht, schaltungstechnisch entworfen und aufgebaut, womit Array-, Frequenz-, und Polarisations-Diversity ermöglicht wird. Dies führt zu einer signifikant verbesserten Robustheit gegenüber den angesprochenen Störungen. Diese Arbeit umfasst das Design des dualbandigen und dualpolarisierten Patchantennenelements, das Design des kompakten Antennenarrays, das Studium der Kreuzpolarisationsquellen in Patchantennen, die Analyse des Einflusses der gegenseitigen Kopplung auf die Strahlungseffizienz und Polarisationsreinheit, und die Abschwächung beider Effekte durch eigenmode-basierten Entkopplungs- und Anpassungsnetzwerken. Darüber hinaus beinhaltet die Arbeit die Integration des Antennensystems mit einem HF-Frontend zur Leistungsverstärkung, Filterung und Signalkonvertierung der Satellitensignale. Die Arbeit umfasst auch die Integration mit einem Array-basierten digitalen Empfänger, in dem neben der Datenerfassung, auch die Richtungsschätzung, das Beamforming und die Anti-Jamming-Algorithmen implementiert wurden. Die Machbarkeit sowohl der Array-Diversity als auch der Polarisations-Diversity wurde in Automotive-related Feldmessungen bestätigt, insbesondere für Elevationswinkel unter 40 bzw. 60 Grad, wo der Einfluss des Mehrwegempfangs ausreichend hohe Pegel erreicht. Die Messungen bestätigten die Robustheit des Empfängers gegenüber Stör- Nutzsignalverhältnissen von bis zu 85 dB und übertrafen damit mehrere "State-of-the-Art" Empfänger.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019000261
Dölker, Eva-Maria;
Lorentz force evaluation : novel forward solution and inverse methods. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (xiii, 152 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Die Entwicklung neuer Materialien sowie die ansteigenden Anforderungen an Qualität und Sicherheit erfordern die Entwicklung hochauflösender, zerstörungsfreier Werkstoffevaluierungsverfahren für die Produktion und Wartung. Im neuen Lorentzkraftevaluierungsverfahren wird ein Permanentmagnet relativ zu einem elektrisch leitenden Prüfkörper bewegt. Aufgrund der Bewegung werden Wirbelströme im Prüfkörper induziert. Die Wechselwirkung der Wirbelströme mit dem Magnetfeld führt zur Lorentzkraft, welche auf den Prüfkörper wirkt. Eine Kraft derselben Größe aber in entgegengesetzte Richtung wirkt auf den Permanentmagneten, wo sie gemessen wird. Bei Vorliegen eines Defekts sind die Wirbelstromverteilung und entsprechend die Lorentzkraft verändert. Die Defekteigenschaften werden aus den gemessenen Lorentzkraftkomponenten mittels der Lösung eines schlecht gestellten inversen Problems bestimmt. Die Ziele der Dissertation umfassen die Entwicklung einer neuen Vorwärtslösung, den Vergleich verschiedener Vorwärtslösungen, die Entwicklung neuer inverser Verfahren sowie die Erarbeitung einer Methode zur verbesserten Defekttiefenbestimmung für die Lorentzkraftevaluierung. Des Weiteren wurde ein qualitativer Vergleich mit der klassischen Wirbelstromevaluierung umgesetzt. Die existierenden Vorwärtslösungen für die Lorentzkraftevaluierung: "Approximate Forward Solution" und "Extended Area Approach" wurden hinsichtlich der Defektrekonstruktionsgüte verglichen. Es wurde ein Zielfunktionsscanningverfahren angewandt um den Einfluss der beiden Vorwärtslösungen direkt zu vergleichen. Damit wurde eine Verzerrung durch die sonst notwendige Parameterwahl bei inversen Methoden vermieden. Die Verwendung der Vorwärtslösung "Extended Area Approach" erzielte genauere Schätzungen der Defekttiefe und -abmessungen im Vergleich zur "Approximate Forward Solution". Die beiden Vorwärtslösungen sind jedoch auf Defekte mit gleichmäßiger Geometrie beschränkt. Aus diesem Grund wurde die neue Vorwärtslösung "Single Voxel Approach" entwickelt. Sie basiert auf der Superposition von Kraftveränderungssignalen von kleinen elementaren Defekten. Bei numerischen Simulationen mit Defekten verschiedener Größen, Tiefen und Formen zeigte der "Single Voxel Approach" die geringste Abweichung im Vergleich zu den beiden existierenden Vorwärtslösungen. Eine Minimum-Norm-Schätzung mit Elastic-Net-Regularisierung wurde auf die Lorentzkraftmessdaten eines Aluminiumprüfkörpers zur Rekonstruktion der Defekteigenschaften angewandt. Die Motivation zur Nutzung der Elastic-Net-Regularisierung stammt aus dem a priori Wissen, dass ein nicht-leitender Defekt von einem Prüfstück mit konstanter Leitfähigkeit umgeben ist. Die weit verbreitete Tikhonov-Phillips-Regularisierung wurde zu Vergleichszwecken angewandt. Mit beiden Regularisierungsmethoden konnte reproduzierbar eine korrekte Defekttiefenschätzung und eine adäquate Größenschätzung erzielt werden. Dasselbe inverse Verfahren wurde für die Defektrekonstruktion aus Wirbelstromevaluierungsmessdaten eines Aluminiumprüfkörpers angewandt. Die Defektrekonstruktionsergebnisse stellten sich für tiefer liegende Defekte verschwommen und weniger stabil im Vergleich zur Lorentzkraftevaluierung dar. Im Gegensatz war mit der Wirbelstromevaluierung die Rekonstruktion komplexerer Defektgeometrien möglich. Als weitere inverse Methode, wurde die adaptierte Landweber-Iteration für die Lorentzkraftevaluierung eingeführt. Die Landweber-Iteration wurde ausgewählt, da sich im Bereich der elektrischen Kapazitätstomographie vielversprechende Rekonstruktionsergebnisse gezeigt haben. Die adaptierte Landweber-Iteration erzielte adäquate Defektgrößenschätzungen. Die Position von tief liegenden Defekten wurde zu hoch rekonstruiert. Die Lorentzkraftevaluierung ist gekennzeichnet durch die Schwierigkeit, dass ein kleiner Defekt nahe der Prüfkörperoberfläche und ein größerer tiefer liegender Defekt ähnliche Kraftveränderungssignale zeigen. Das erschwert die Bestimmung der korrekten Defekttiefe. Das neue Prinzip der geschwindigkeitsabhängigen Lorentzkraftevaluierung wurde eingeführt um die Defekttiefenbestimmung zu unterstützen. Die Lorentzkraftveränderungssignale werden bei einer hohen Geschwindigkeit (10 m/s) relativ zu den Signalen bei einer niedrigen Geschwindigkeit (0.1 m/s) ausgewertet. Amplitudenveränderungen und Signalverschiebungen werden genutzt um die Defekttiefe zu bestimmen. Dabei wird der bewegungsinduzierte Skineffekt ausgenutzt. Die Plausibilität dieser neuen Methode wurde für Simulationsdaten gezeigt.



https://www.db-thueringen.de/receive/dbt_mods_00040851
Kutschka, Hermann;
The effect of uncertainty in MEG-to-MRI coregistrations on MEG inverse problems. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (xiii, 111 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Für eine hohe Präzision in der Schätzung von Gehirnaktivität, ausgehend von Daten der Magnetoenzephalographie (MEG), ist eine sehr genaue Koregistrierung der Quellen und Sensoren notwendig. Üblicherweise werden hierbei die Quellorte der Gehirnaktivität bezüglich zu Koordinaten der Magnetresonanztomographie (MRI) angegeben. Die Sensor-zu-MRI Koregistrierungen sind der Schwerpunkt dieser Arbeit. Die Qualität von Koregistrierungen wird bewertet und der Effekt ihrer Unsicherheiten auf Schätzungen der Gehirnaktivität beziehungsweise auf Quellschätzungen wird untersucht. Beide Themen, die Qualitätsbewertung und die Übertragung der Unsicherheiten auf Quellschätzungen werden separat behandelt. In dieser Arbeit wird vorgeschlagen, den target registration error (TRE) als Qualitätskriterium für Sensor-zu-MRI Koregistrierungen zu verwenden. Der TRE kann den Effekt von Koregistrierungsunsicherheiten an beliebigen Punkten messen. Insgesamt wurden 5544 Datensätze mit Sensor-zu-Kopf und 128 Datensätze mit Kopf-zu-MRI Koregistrierungen aus einem Labor analysiert. Ein adaptiver Metropolis-Algorithmus wurde genutzt um optimale Koregistrierungen zu schätzen und um Stichproben ihrer Parameter (Rotation und Translation) zu ziehen. Es wurde ein TRE von 1.3 und 2.3 mm an der Kopfoberfläche gefunden. Weiter wurde eine mittlere absolute Differenz der Koregistrierungsparameter zwischen Metropolis-Algorithmus und dem etablierten iterative closest point-Algorithmus von (1.9 ± 1.5)˚ und (1.1 ± 0.9) mm gefunden. Ein Zweistichproben-t-Test zeigte eine signifikante Verbesserung in der Optimierung der Zielfunktion durch den Metropolis-Algorithmus. Die Übertragung der Koregistrierungsunsicherheit auf Quellschätzungen erfolgte unter Verwendung von speziellen Polynom-Entwicklungen des Beamformers und der standardized low resolution tomography (sLORETA). Dieser Ansatz wurde für auditorische, visuelle und somatosensorische Hirnaktivität mit verschiedenen Signal-Rausch-Verhältnissen und Beschränkungen der Quellorientierung auf Datensätzen von 20 Probanden getestet. Durch die Verwendung von Polynom-Entwicklungen als effiziente Surrogate wurde die örtliche Verteilung des Quellschätzungs-Maximums für 50000 Koregistrierungen ermittelt. Aus den Ergebnissen lässt sich schließen, dass es möglich ist, Polynom-Entwicklungen mit hoher Genauigkeit auf MEG-Quellschätzungen anzuwenden. Polynom-Entwicklungen der Quellschätzungen reduzierten die Berechnungszeiten erheblich um den Faktor von etwa 10000 für Beamformer und 50000 für sLORETA im Vergleich zu den exakten Originalrechnungen.



https://www.db-thueringen.de/receive/dbt_mods_00042629
Wang, Hongmei;
Hydrogen and nitrogen plasma treated materials with disordered surface layer used for energy storage and conversion devices. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (XX, 108 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Die Plasmabehandlung gilt als eine einfache und effektive Methode zur Modifikation der Materialoberfläche von Elektroden für elektrochemische Energiespeicher- und Umwandlungs-vorrichtungen, um die Leistungen zu verbessern. Infolgedessen konnten nach der Hochleistungsplasmabehandlung ungeordnete Oberflächenschichten und Atomleerstellen entstehen, die eine wichtige Rolle bei der Leistungssteigerung von Energiespeicher- und Umwandlungsmaterialien spielen. In dieser Arbeit werden Wasserstoff- und Stickstoffplasma verwendet, um Lithium- und Natriumionenbatterien (LIBs und SIBs) Anodenmaterialien und elektrochemische Katalysatoren für die Stickstoffreduktionsreaktion (NRR) zu modifizieren, und die elektrochemischen Anwendungsleistungen dieser Materialien zu untersuchen. Erstens, werden WS2-Nanopartikel durch Wasserstoff-Plasma-Behandlung bei 300 ˚C für 2 Stunden modifiziert, und die hydrierten WS2 (H-WS2)-Nanopartikel zeigen eine deutlich verbesserte elektrochemische Leistung als Anodenmaterial für Lithium-Ionen-Batterien (LIBs) und Natrium-Ionen-Batterien (SIBs). Die TEM-Untersuchung zeigt eine ungeordnete Oberflächenschicht mit einer Dicke von etwa 2,5 nm nach der Behandlung, was auch durch die Ergebnisse der Raman Spektroskopie bestätigt wird. Die Verschiebung der XPS-Peaks deutet an, dass die Oberflächenstörungen der Struktur in die kristalline Struktur integriert sind. Die H-WS2-basierten LIBs und SIBs weisen eine deutlich höhere spezifische Kapazität bei unterschiedlichen Stromdichten auf. Darüber hinaus zeigt die Untersuchung der elektrochemische Impedanzspektroskopie (EIS) eine drastische Verringerung des Ladungsübertragungswiderstands sowohl für LIB als auch für SIB. Das bedeutet, dass die plasmahydrierte Elektrode für den Elektronentransport während des elektrochemischen Prozesses vorteilhafter ist. Die verbesserte Leistung von H-WS2 in beiden Anwendungen von Li und Na Ionenbatterien ist auf den reduzierten Ladungsübertragungswiderstand an der ungeordneten Oberflächenschicht und die verbesserte elektronische Leitfähigkeit durch die Störungsoberfläche in der kristallinen Struktur zurückzuführen. Zweitens, werden stickstoffdotierte TiO2 (N-TiO2)-Nanopartikel durch Stickstoffplasma-Behandlung hergestellt und als Anodenmaterial von Natriumionenbatterien (SIBs) untersucht. Die N-TiO2-Nanopartikel weisen eine wesentlich bessere Ratenleistung auf und liefern Entladekapazitäten von etwa 621 mAh-g-1 bei 0,1 C und 75 mAh-g-1 bei 5 C sowie eine deutlich verbesserte Kapazitätserhaltung (mehr als 98% nach mehr als 400 Zyklen) als das unbehandelte TiO2. Im Gegensatz zu den anderen stickstoffdotierten TiO2, von denen in der Literatur berichtet werden, bildet sich in den N-TiO2-Nanopartikeln nach der N2-Plasmabehandlung eine ungeordnete Oberflächenschicht mit einer Dicke von etwa 2,5 nm. Sowohl der dotierte Stickstoff als auch die ungeordnete Oberflächenschicht spielen eine wichtige Rolle bei der Verbesserung der Natriumspeicherleistung. Drittens, haben wir das TiO2-Au (P-TiO2-Au, Goldnanocluster, unterstützt durch P25 TiO2-Nanopartikel, Au-Belastung: ˜ 2 wt%) als elektrochemische Katalysatoren für die Stickstoffreduktionsreaktion benutzt. Das Material wurde mit H2-Plasma modifiziert und bildete dann einen blau-schwarzen H-TiO2-Au-Katalysator, der eine verbesserte Leistung für den Prozess der Stickstoffreduktionsreaktion (NRR) im Vergleich zur unbehandelten Probe zeigte. Aus den TEM-Untersuchungen konnten wir einige ungeordnete Positionen an der Oberfläche finden, und auch die Raman-Intensitäten von H-TiO2-Au sind viel niedriger als das unbehandelte Material, das auf die ungeordnete Oberfläche und die Bildung von Sauerstoffleerstellen zurückzuführen ist. Darüber hinaus konnte nach der Wasserstoff-Plasma-Behandlung ein kleiner Peak-Shift im XPS -Spektrum festgestellt werden. Wenn die Probe für die elektrochemische NRR verwendet wurde, ist die Ausbeute an NH3 von blau-schwarzem H-TiO2-Au etwa 9,5 mal höher als die unbehandelte Probe, während die höchste faradaysche Effizienz von 2,7 % auch bei dem Potential von -0,1V erreicht wird. Die Ergebnisse der DFT-Berechnung bestätigen, dass H-TiO2-Au bei Sauerstoffleerstellen und ungeordneter Oberflächenschicht für den NRR-Prozess sehr bevorzugt wird. Es zeigt außerdem, dass der Reduktionsprozess der H2-Plasma-Behandlung eine wichtige Rolle bei der Verbesserung der Leistung von Katalysatoren spielt. Es könnte das erste Mal sein, dass die Plasmatechnik zur Modifikation des Katalysators für elektrochemische NRR-Prozesse eingesetzt wurde.



https://www.db-thueringen.de/receive/dbt_mods_00040641
Al Mustafa, Nader;
Investigation of advanced GaN HEMTs for digital and high frequency applications. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (137 Blätter)
Technische Universität Ilmenau, Dissertation 2019

Die physikalischen Eigenschaften des Galliumnitrid (GaN) und der darauf basierenden Materialien eignen sich besonders zur Herstellung von leistungselektronischen Bauelementen. Die große Bandlücke und hohe elektrische Durchbruchfeldstärke von GaN in Kombination mit einem zweidimensionalen Elektronengas hoher Dichte durch induzierte Polarisation in der AlGaN/GaN-Grenzfläche ermöglicht die Entwicklung von Transistoren mit hohen Sperrspannungen, niedrigen Durchlasswiderständen und niedrigen Schaltladungen. Die aus herkömmlichen GaN-HEMTs hergestellten Transistoren haben jedoch bereits ihre Leistungsgrenze erreicht. Um die zukünftigen Bedürfnisse von leistungselektronischen Bauelementen zu erfüllen, werden Forschungen zu nichtklassischen HEMT-Konzepten, zum Beispiel Superjunction GaN-HEMT, PNT GaN-HEMTs oder zu neuartigen Barrierematerialien durchgeführt. Diese Arbeit will die GaN-Technologie durch neue Ansätze in Design und Charakterisierung hocheffizienter GaN-Transistoren vorantreiben, um ihr volles Potential zu entfalten. Das Ziel der vorliegenden Arbeit ist es, verschiedene nichtklassische GaN HEMT-Konzepte hinsichtlich ihrer Performance sowie ihrer Eignung für zukünftige Logik, leistungselektronisch und RF Anwendungen zu bewerten und ihren Designspielraum einzugrenzen. Die Untersuchungen basieren auf numerischen Bauelementesimulationen unter Zuhilfenahme analytischer Berechnungen. Es wird gezeigt, dass das einfache und robuste Drift-Diffusionsmodell für die Simulation solcher nichtklassischen Bauelemente geeignet ist. Die Koexistenz von zweidimensionalen Elektronen- und Löchergasen in GaN-basierten Heterostrukturen wird mittels analytischer Modelle, die im Rahmen dieser Arbeit entwickelt wurden, und selbstkonsistenten numerischen Lösungen der Schrödinger- und Poisson-Gleichungen untersucht. Es kann gezeigt werden, dass für bestimmte Kombinationen von Bias-Bedingungen und Schichtdesign koexistierende 2DEGs und 2DHGs in GaN/AlGaN/GaN-Strukturen gebildet werden können, wobei sich das 2DHG an der Grenzfläche zwischen Grenzfläche und Grenzfläche befindet. Sobald ein 2DHG erzeugt ist, nimmt der Effekt der Gate-Spannung auf das 2DEG schnell ab und eine Sättigung der 2DEG-Dichte wird beobachtet. Außerdem ist es in Strukturen mit dünnen Barrieren viel schwieriger, ein 2DHG selbst für große Oberflächenpotentiale zu erzeugen. Die Formierung eines zweiten Kanals in AlGaN/GaN/AlGaN/GaN Heterostrukturen wurde untersucht. Es wurde gezeigt, dass für bestimmte Kombinationen von Bias-Bedingungen und Schichtdesign koexistierende zwei Kanäle in AlGaN2/GaN2/AlGaN1/GaN1-Strukturen gebildet werden können, wobei sich beide Kanäle am AlGaN1/GaN1 und AlGaN2/GaN2 befinden. Sobald der zweite Kanal erzeugt ist, nimmt die Wirkung der Gate-Spannung auf das erste 2DEG schnell ab und eine Sättigung des Drain-Stroms wird beobachtet. Besondere Aufmerksamkeit wurde auf einen neuartigen Inverter mit vertikalem Aufbauen gelegt, indem diese zwei Kanäle verwendet wurden. Andererseits konzentrieren sich theoretische Untersuchungen von AlGaN/GaN-HEMT-Strukturen für leistungselektronische Anwendungen auf die Abschätzung von Oxidgrenzflächenladungen in MIS-HEMT-Strukturen, und es werden zwei Simulationsstudien zu alternativen selbstsperrenden HEMT-Konzepten vorgestellt. Die Untersuchung von Oxidgrenzflächenladungen basiert auf einem Vergleich von gemessenen und simulierten Schwellenspannungen experimenteller HEMTs mit und ohne Al2O3-Schicht unter dem Gate. Wir finden, dass in beiden Fällen die geschätzte Oxidgrenzflächenladung die gleiche ist. Darüber hinaus entwickelten wir ein einfaches analytisches Schwellenspannungsmodell für die MIS HEMT Struktur, mit dem die Grenzflächenladung mit einem Taschenrechner abgeschätzt werden kann. Wir schlagen auch einen neuen Ansatz vor, bei dem die Wirkung einer p-dotierten Deckschicht mit der eines Gateoxids kombiniert wird, um einen selbstsperrenden HEMT zu erreichen. Wir konzentrieren uns auf die von Ota et al. mit 1D-Schrödinger-Poisson-Simulationen. Insbesondere zeigt unser analytisches Modell, dass die Schwellenspannung unabhängig von der Dicke sowohl der PNT-Schicht als auch der gespannten GaN-Kanalschicht ist. Darüber hinaus diskutieren wir Optionen zur Erhöhung der Elektronendichte in den ungesteuerten (ungated) Bauelementbereichen, um die Source/Drain-Widerstände zu reduzieren. Darüber hinaus werden gated kubische InGaN/InN-Heterostrukturen für die Anwendung in InN-basierten Transistoren mit hoher Elektronenmobilität theoretisch untersucht. Die Bildung zweidimensionaler Trägergase in InGaN/InN-Strukturen wird im Detail untersucht und Designprobleme für die InGaN-Barriere untersucht. Es wird gezeigt, dass für bestimmte Oberflächenpotentiale eine unerwünschte Sättigung der Schichtdichte des Elektronengases in der InN-Kanalschicht auftreten kann. Optionen zur Verbesserung der Elektronendichte in den Kanal- und Oberflächenpotentialbereichen für einen geeigneten Transistorbetrieb werden vorgestellt. Abschließend wird die Bildung zweidimensionaler Elektronengase (2DEGs) in gitterangepassten AlScN/GaN- und AlYN/GaN-Heterostrukturen durch numerische selbstkonsistente Lösungen der Schrödinger- und Poisson-Gleichungen untersucht. Die Elektronenkonzentrationsprofile und die resultierenden 2DEG-Schichtdichten in diesen Heterostrukturen werden berechnet und mit denen verglichen, die an AlGaN/GaN-Grenzflächen auftreten. Die kombinierte Wirkung der stark polarisationsinduzierten gebundenen Ladungen und der großen Leitungsbandoffsets an den AlScN/GaN- und AlYN/GaN-Heteroübergängen führt zur Bildung von 2DEGs mit sehr hohen Elektronendichtedichten. Für die AlScN/GaN- und AlYN/GaN-Heterostrukturen werden 2DEG-Schichtdichten von etwa 4 bis 5-mal so groß wie für Al0,3Ga0,7N/GaN-Strukturen berechnet. Unsere Ergebnisse demonstrieren das Potenzial von AlScN- und AlYN-Barrieren für GaN-basierte Transistoren mit hoher Elektronenmobilität.



https://www.db-thueringen.de/receive/dbt_mods_00040618
Röding, Matthias;
Polarimetrische Analyse breitbandiger Radar-Signale für bildgebende Anwendungen. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (V, 171 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Wie Systeme ihre Umwelt erfassen und Umgebungen wahrnehmen ist in den letzten Jahren in nahezu allen Lebensbereichen in den Fokus technischer Entwicklungen gerückt. Es sind Anwendungen der Assistenz oder Automatisierung im privaten Raum (Smart Home), in der Produktion (Industrie 4.0) oder in Mobilitätssystemen der Logistik bzw. des Verkehrs (autonomes Fahren), welche möglichst qualitativ hochwertige und von Umgebungseinflüssen unabhängige Sensorinformationen für ihre korrekte Funktionsweise benötigen. Radar-Sensoren bieten die Möglichkeit von der Umgebung zurückgestreute Signale zu erfassen und durch räumlich verteilte Messungen eine Abbildung der Umwelt vorzunehmen. Unter Nutzung einer synthetischen Apertur und Radar-Signalen großer Bandbreite entstehen dabei Kartierungen, welche räumliche Informationen von Rückstreuobjekten bereitstellen. Die Auswertung des Polarisationszustands gesendeter und empfangener Signale, bietet außerdem eine detailliertere Aussage über deren Interaktion mit der Umgebung und ursächliche Streumechanismen. In der klassischen Radar-Fernerkundung sind die Aufgaben der Bildgebung und der Polarimetrie voneinander getrennte Verarbeitungsschritte, da erst nach der Bildgebung die notwendige Auflösung zur Trennung einzelner Mechanismen zur Verfügung steht. Informationen der Objekte wie Form oder Ausrichtung im Raum werden entsprechend durch Auswertung des polarimetrischen Streumechanismus im Bildbereich gewonnen. Ziel dieser Arbeit ist die Erweiterung wissenschaftlicher Ausgangspunkte der bildgebenden UWB-Radar-Sensorik durch Methoden der Radar-Polarimetrie der Fernerkundung. Durch die Erschließung polarimetrischer Signalanalyse breitbandiger Radar-Signale als Vorverarbeitung bildgebender Verfahren, können polarimetrische Mechanismen bereits im Zeitbereich identifiziert und ausgewertet werden. Die daraus gewonnenen Informationen dienen der Zerlegung der Radar-Daten in einzelne Rückstreukomponenten, wodurch bildgebende Verfahren die Umgebung des Sensors mit höherer Genauigkeit und Interpretierbarkeit erfassen. Dazu werden zwei neuartige Methoden detailliert diskutiert und mit bestehenden polarimetrischen Verfahren in Bezug gesetzt. Es handelt sich dabei, um einen modellbasierten Ansatz für die Zerlegung im Zeitbereich und ein Verfahren der statistischen Analyse in Zeit- und Bildbereich. Die Funktionsweise der Methoden wird in dieser Arbeit mit Simulationsdaten veranschaulicht und mithilfe von Messungen in realitätsnaher Umgebung verifiziert.



https://www.db-thueringen.de/receive/dbt_mods_00040525
Kremmel, Johannes;
Koppler und Funtionsstrukturen für integriert-optische single-mode polymer Wellenleiter. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (iii, 139 Seiten)
Technische Universität Ilmenau, Dissertation 2019

In der vorliegenden Arbeit wurde die Erweiterung der Funktionalität einer bekannten integriert optischen Polymerwellenleitertechnologie untersucht. Die untersuchten Wellenleiter werden, basierend auf direkt UV-strukturierbaren Polymeren, unter Zuhilfenahme eines Laser-Direkt-Schreibverfahrens (Laser Direct Imaging, LDI) hergestellt. Die dabei gemachten Entwicklungen umfassen einerseits verschiedene Messmethoden zur Charakterisierung von Wellenleitern, andererseits die Realisierung von gekoppelten Wellenleitern zum Aufbau von Richtkopplerstrukturen und in weiterer Folge von aktiven Funktionsstrukturen wie Schalter und Sensoren. Zur industriellen Fertigung ist die einfache und schnelle Faserkopplung solcher Wellenleiter essenziell. Aus diesem Grund wurde ein Konzept zur passiv ausgerichteten Mehrfach-Faserkopplung entwickelt und umgesetzt. Dabei wurde eine signifikante Verbesserung der Koppeleffizienz, im Vergleich zu ähnlichen Konzepten, erreicht. Zur Demonstration der Funktion wurden, basierend auf den zuvor durchgeführten Entwicklungen, thermo-optisch aktuierte integriert-optische Schalter sowie ein integriert-optischer Verschiebungssensor ausgelegt, realisiert und untersucht.



https://www.db-thueringen.de/receive/dbt_mods_00040516
Dallorto, Stefano;
Enabling control of matter at the atomic level: atomic layer deposition and fluorocarbon-based atomic layer etching. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (126 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Die fortschreitende Miniaturisierung von Halbleiterschaltkreisen erfordert die Entwicklung neuartiger Strukturierungs-, Abscheidungs- und Ätzmethoden. Die dafür erforderliche Auflösung nähert sich heutzutage atomaren Maßstäben. Die derzeitigen Trends in der Fabrikation von elektronischen Schaltkreisen stellen strenge Anforderungen an die verwendeten Nanostrukturierungsmethoden, in Bezug auf Kontrolle der Materialeigenschaften und der Strukturabmessungen. Für diese nanoskalige Strukturen sind außerdem Oberflächenzusammensetzung und Oberflächendefekte genauso wichtig wie die Strukturabmessungen, um die gewünschte Funktionalität zu erreichen. Letztendlich ist es daher notwendig beliebige Materialien mit der Präzision einzelner atomarer Lagen abzuscheiden und abzutragen. Die vorliegende Arbeit untersucht geeignete Fabrikations- und Charakterisierungsprozesse für die Ära der atomar genauen Materialstrukturierung mittels sogenannter Atomic Layer Deposition (ALD) und Atomic Layer Etching (ALE). Um die Herausforderungen atomar genauer Materialstrukturierung zu adressieren ist ein tiefgehendes Verständnis der Materialien und ihrer physikalisch-chemischen Wechselwirkungen von Nöten. In der vorliegenden Arbeit wird die Synergie verschiedener Materialien und Fabrikationsprozesse untersucht. Durch Anwendung von ALD für die Doppelstrukturierung mittels Spacer-Technik (spacer defined double patterning, SDDP) wird gezeigt wie sich Strukturen mit Dimensionen unterhalb von 10 nm herstellen lassen. Generell ist die Auflösung von SDDP durch das Fehlen geeigneter Nanofabrikationsprozesse für Strukturen unterhalb von 10 nm limitiert. Die Arbeit etabliert, dass thermische ALD eine konforme Abscheidung einer Titandioxid-Spacer-Schicht erlaubt, ohne dabei das darunterliegende Substrate zu beschädigen oder zu modifizieren. Zusammenfassen lässt sich sagen, dass die erste erfolgreiche Fabrikation von 7.5 nm breiten Titanoxidstrukturen mittels SDDP nur durch die Anwendung von Prozessen auf atomarem Maßstab ermöglicht wurde. Während ALD bereits zu einer produktiven Standardtechnologie geworden ist, erweist sich die Etablierung des korrespondieren Ätzprozesses, nämlich ALE, als ungleich schwieriger. Tatsächlich ist die kontrollierte Materialabtragung um jeweils eine Atomlage ein komplexes wissenschaftliches Problem. Dies gilt besonders für direktionales Ätzen. Ein Hauptziel der Arbeit besteht in der Entwicklung von Methoden, die es erlauben existierende Plasmaätzanlagen für ALE zu verwenden. In diesem Zusammenhand etabliert und evaluiert diese Arbeit einen zyklischen Prozess basierend auf Fluorcarbonen (FC) für ALE von Siliziumdioxid. Es werden die beteiligten Reaktionsmechanismen charakterisiert und der Einfluss der Prozessparameter evaluiert. Mittels eines zyklischen FC- und Argon-Plasmas ist es möglich Siliciumdioxid atomar genau in einer minimal modifizierten, konventionellen Plasmaätzanlage zu ätzen. Plasma-basiertes ALE erlaubt direktionales Ätzen, das für tiefe, schmale Strukturen erforderlich ist. Zum ersten Mal werden hier sowohl seitenverhältnisunabhängiges Ätzen als auch hohe Zuverlässigkeit beim Strukturtransfer mittels FC-basiertem ALE erreicht. Das Resultat wird durch eine detaillierte Untersuchung des Einflusses der Plasmaparameter auf das Ätzverhalten von Siliziumdioxid und Anwendung der gewonnenen Informationen auf ein selbstlimitierendes Verhalten ermöglicht. Zusammengefasst demonstriert die vorliegende Arbeit wie neue Technologieknoten, die Teil des zunehmenden Trends zu atomar genauer Halbleiterprozessierung sind, durch ALD und ALE ermöglicht werden.



https://www.db-thueringen.de/receive/dbt_mods_00040458
Vorbringer-Dorozhovets, Nataliya;
Laserinterferometrisches Rasterkraftmikroskop. - Ilmenau : Universitätsbibliothek, 2019. - 1 Online-Ressource (176 Seiten)
Technische Universität Ilmenau, Dissertation 2019

Seit der Entwicklung im Jahr 1986 ermöglicht das Rasterkraftmikroskop (AFM) den Blick in die Nanowelt. Das Funktionsprinzip des AFM basiert auf Detektion der interatomaren Wechselwirkung zwischen abzubildender Oberfläche und einer pyramidenförmigen Spitze mit einem Radius von wenigen Nanometern. Die Spitze ist am freien Ende eines Cantilevers angebracht. Die durch die Wechselwirkungskräfte verursachte Auslenkung des Cantilevers wird mit einem Lagedetektor erfasst. Im AFM wird die Antastspitze über die Messobjektoberfläche geführt und die Oberfläche wird währenddessen abgetastet, ähnlich wie bei einem Schallplattenspieler die Nadel des Tonabnehmers die Platte abtastet. Der Lagedetektor liefert dabei ein Signal, das mit der Topographie der Oberfläche zusammenhängt. Die zu jedem einzelnen Messpunkt erfassten Messwerte werden zu einem Bild zusammengesetzt. Von Beginn an dienten AFM für die bildliche Darstellung von Nanostrukturen. Der heutige technologische Fortschritt erfordert metrologisch exakte Objektvermessung mit Nanometergenauigkeit über große Messbereiche. Solche Messungen sind nur möglich, wenn die Mess- und Positioniersysteme gute messtechnische Eigenschaften aufweisen und auf nationale und internationale Normale rückführbar sind. Dies war der Ausgangspunkt zur Entwicklung eines laserinterferometrischen Rasterkraftmikroskops (LiAFM), welches als Antastsystem für die Nanopositionier- und Nanomessmaschine (NPMM) NMM-1 dienen soll. Das Hauptmerkmal des LiAFM ist der kombinierte Lagedetektor für die Messung der Torsion, Biegung und Position des Cantilevers mit einem einzigen Messstrahl. Dieser kombinierte Lagedetektor schließt einen Lichtzeiger und ein Interferometer ein und wird im LiAFM als interferometrisches Sondenmesssystem bezeichnet. Das Laserinterferometer ermöglicht die Rückführbarkeit der Positionsmessung auf das Längennormal. Der Lichtzeiger zeichnet sich von anderen Lagedetektoren durch die gleichzeitige und getrennte Erfassung von Biegung und Torsion des Cantilevers aus. Die NMM-1 führt bei einer Messung die Scanbewegung durch, somit ist für das LiAFM ein x-y-Scanner nicht erforderlich. Um die Messdynamik und den Messbereich des LiAFM zu erhöhen ist ein piezoelektrischer z-Antrieb integriert. Während der Messungen wird eine interferometrische Positionsmessung sowie eine hochgenaue Regelung der Durchbiegung des Cantilevers (mittels z-Antriebes und Biegungssignals des Lichtzeigers) durchgeführt und die Kombination der Bewegungen von NMM-1-Tisch und z-Antrieb des LiAFM verwendet. Das LiAFM wurde erfolgreich aufgebaut, in die NMM-1 integriert und für zahlreiche Messaufgaben eingesetzt. In der vorliegenden Arbeit wird dieses neuartiges LiAFM, seine besonderen Merkmale, die Funktionsweise, der Aufbau, die messtechnischen Eigenschaften sowie die wichtigsten Messungen und deren Ergebnisse ausführlich dargestellt.



https://www.db-thueringen.de/receive/dbt_mods_00040263