Dissertationen ab 2018

Anzahl der Treffer: 225
Erstellt: Mon, 29 Apr 2024 23:14:48 +0200 in 0.0457 sec


Krenkel, Sharon;
Anisotrope, hierarchische Strukturierung von nanoporösen Gläsern. - Ilmenau : Universitätsverlag Ilmenau, 2018. - 1 Online-Ressource (xvii, 277 Seiten). - (Werkstofftechnik aktuell ; Band 17)
Technische Universität Ilmenau, Dissertation 2017

Die im Rahmen des Projektes "ANIMON" entstandene Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von glasbasierten, hierarchisch porösen Monolithen mit anisotropem Porensystem im Mikro- bzw. Nanometerbereich. Die Formgebung durch Verziehen von Rohrbündeln unter Anwendung des Draw-Down-Prozesses wurde mit dem Herstellungsprozess für nanoporöse Gläser ausgehend von Alkaliborosilicatgläsern kombiniert. Mit diesem zweistufigen Verfahren wurden hierarchisch poröse Multikapillaren erzeugt. Die Größe der anisotrop orientierten Luft- bzw. Kanalporen liegt zwischen 5*10^-6 und 2 mm, die der Nanometerporen zwischen 2 und 300 nm. Die Grundlagenuntersuchungen zum Entmischungsverhalten und zur Viskosität ausgewählter Natriumborosilicatgläser und die Kontrolle der Prozesstechnik waren Voraussetzungen für die Steuerung der Porengrößen. Durch eine gezielte Auswahl der Prozessparameter, angepasst an die Glaszusammensetzung, ließ sich die Größeneinstellung der Nanometerporen vom Formgebungsprozess trennen. In Hinblick auf zukünftige Anwendungen wurden die mechanischen sowie optischen Eigenschaften bestimmt, erste Versuche zur Biokompatibilität durchgeführt und die Oberfläche modifiziert. In einem weiteren Teil der Arbeit wurde der Ansatz verfolgt, auch die Nanometerporen in der Glaswand zu orientieren. Hierfür war die Ausrichtung der Primärphasen unter Zugbelastung zielführend. Die Quantifizierung der Porenorientierung erfolgte mittels eines eigens entwickelten Bildanalyseverfahrens. Über die im Projekt vorgesehene Umformmethode hinaus wurden generative Fertigungsverfahren zur Herstellung hierarchisch poröser Monolithe mit anisotropen Poren im Mikrometerbereich untersucht. Im Falle des selektiven Lasersinterns mit dem CO2-Laser wurden mechanisch stabile Monolithe erhalten, deren Porengröße von der Formgebung unabhängig kontrollierbar ist. Des Weiteren wurde eine anisotrope Orientierung der Luft- und Kanalporen über die Schwamm-Replika-Technik realisiert. Verziehen und generative Fertigung wurden erfolgreich für entmischbare Gläser optimiert, so dass Glasformkörper mit Nanometerporen in den Wänden, Kanälen mit Durchmessern bis zu Millimetern und einer großen Bandbreite an geometrischen Formen erzeugt werden können. Nach passender Oberflächenfunktionalisierung erlauben sie Anwendungen in der Sensortechnologie, als Mikroreaktoren und für die Katalyse.



https://www.db-thueringen.de/receive/dbt_mods_00034529
Günther, Karsten;
Werkstofftechnische Betrachtungen zum Heißdraht unterstützten MSG-Auftragschweißen hartstoffverstärkter Verschleißschutzlegierungen. - Ilmenau : Universitätsverlag Ilmenau, 2018. - 1 Online-Ressource (XVI, 141 Seiten). - (Fertigungstechnik - aus den Grundlagen für die Anwendung ; Band 5)
Technische Universität Ilmenau, Dissertation 2018

Das Metall-Schutzgas(MSG)-Auftragschweißen von hartstoffverstärkten Verschleiß-schutzlegierungen weist trotz der einfachen Bedienbarkeit und des hohen Mechanisierungsgrades nur eine geringe Akzeptanz im Bereich der Beschichtungstechnik auf. Gründe hierfür liegen insbesondere in der unmittelbaren Korrelation zwischen dem Material- und Energieeintrag, wodurch hohe Drahtvorschübe zwangsläufig eine zunehmende thermische Werkstoffbeanspruchung zur Folge haben. Im praktischen Einsatz führt dies bereits bei geringen Abschmelzleistungen von ca. 5 kg/h zu hohen Aufschmelzgraden von bis zu 40 %. Zudem unterliegen temperaturempfindliche Hartphasen, wie z.B. Wolframschmelzkarbide (WSC), einer hohen thermischen Beanspruchung, was unter anderem auf die direkte Lichtbogenwechselwirkung zurückzuführen ist. Thermisch bedingte Zersetzungsprozesse führen hierbei zu einer Abnahme des WSC-Anteils, wodurch die Verschleißbeständigkeit gemindert wird. Mit Hilfe eines zusätzlich dem Schmelzbad zugeführten Heißdrahtes wurde ein neuartiger Ansatz entwickelt und erforscht, um den Energie- und Materialeintrag beim MSG-Auftragschweißen zu entkoppeln. Neben den verringerten Prozessleistungen bei gleichbleibender Auftragmasse wurde dies insbesondere durch die Verringerung der Schmelzbadtemperaturen nachgewiesen. Hierdurch konnte eine hochproduktive Herstellung aufmischungsarmer Verschleißschutzschichten umgesetzt werden. Die Auswirkung auf die Hartphasencharakteristik erfolgte zunächst anhand FeCr(V)C-Hartlegierungen. Es konnte aufgezeigt werden, dass sich die nahezu unabhängige Regelung von Abschmelzleistung und Aufschmelzgrad positiv auf die Ausscheidung von Primärkarbiden bzw. Hartphasen auswirken. Im Gegensatz zum MSG-Prozess gelang es hierdurch einlagige Verschleißschutzschichten mit einem deutlich höheren Hartphasenanteil und höherer Verschleißbeständigkeit herzustellen. Bei Ni-Basis-Legierungen mit eingelagerten WSC wurde festgestellt, dass sich der Einsatz eines Heißdrahtes positiv auf die Hartphasenverteilung auswirkt. Aufgrund modifizierter Schmelzbadströmungen konnten die für WSC typischen schwerkraftbedingten Seigerungseffekte unterbunden werden, einhergehend mit einer homogenen Verteilung der Hartphasen. Im Vergleich zum optimalen MSG-Prozessfenster betrug der erzielbare WSC-Anteil jedoch nur die Hälfte. Zur Klärung der Ursache wurde ein Ansatz entwickelt, um die thermisch bedingte Zersetzung von WSC quantitativ zu beschreiben. Basierend auf der Einführung eines Zersetzungskennwertes konnte hierdurch erstmals der Einfluss der Schmelzbadgröße, des Aufschmelzgrades und des Tropfenübergangs separat und quantitativ aufgeschlüsselt werden. Hierdurch konnte der geringere WSC-Anteil beim MSG-HD-Verfahren schließlich den Eigenschaften des Lichtbogens und Tropfenübergangs zugewiesen werden. Ferner wurde im Rahmen dieser Arbeit erstmals die Entstehung des Zersetzungssaums bei WSC experimentell nachvollzogen.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2018000025
Lozovoi, Artur;
Theoretical and experimental study of polymer melt dynamics : role of intermolecular dipolar interactions. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (111 Seiten)
Technische Universität Ilmenau, Dissertation 2018

In dieser Arbeit wird die Dynamik verschränkter Polymerschmelzen mittels eines neuartigen vielseitigen NMR-Formalismus umfassend untersucht. Der theoretische Hintergrund für seine Anwendung wird vorgestellt und ausführlich diskutiert. Es wird gezeigt, dass das Regime der langsamen anomalen segmentalen Diffusion, die den verschränkten Polymerschmelzen in einem breiten Zeitraum innewohnt, durch Analyse der Beiträge der intermolekularen dipolaren Wechselwirkungen zu speziellen Varianten von Aufbaufunktionen untersucht werden kann. Einer von ihnen kombiniert die Signale von drei Doppelpuls-Spin-Echo-NMR-Impulsfolgen und wird als Solid-echo Build-up Funktion bezeichnet. Der andere korreliert die Hahn-Echosignale, die zu verschiedenen Zeitpunkten erhalten werden, und wird als Dipolar-correlation Build-up Funktion eingeführt. Beide spiegeln im Wesentlichen die Eigenschaften dipolarer Wechselwirkungen zwischen Spins in einem System wider. Diese Wechselwirkung ist wiederum empfindlich gegenüber der lokalen segmentalen Translation und Reorientierung, was eine Möglichkeit bietet, diese Bewegungen zu untersuchen. Die beiden vorgestellten Methoden werden sowohl auf den konventionellen Niederfeld-NMR-Spektrometern als auch auf der im Rahmen dieser Arbeit aufgebauten Hochtemperatureinheit eingesetzt. Unter Verwendung dieser Ausrüstung wird der vorgeschlagene Ansatz auf die Untersuchung von Polybutadien, Poly(ethylen-alt-propylen) und Polyethylenoxidschmelzen angewendet. Die gefundene Zeitabhängigkeit der Segmentverschiebungen stimmt mit den Resultaten konventioneller Techniken bei kurzen Zeiten gut überein. Darüberhinaus sind die neuen Methoden geeignet, den untersuchten Dynamikbereich sowohl in der Zeit- als auch in der Verschiebungsdomäne signifikant zu erweitern und damit Informationen zu liefern, die für andere experimentelle Methoden kaum zugänglich sind. Daher wird der vorgestellte Ansatz als ein neues leistungsfähiges Werkzeug auf dem Gebiet der Polymerphysik angesehen. Die breite Palette von Informationen, die durch den Dipolar-correlation und den Solid-echo Formalismus geliefert werden, erlaubt einen umfassenden experimentellen Test der Gültigkeit des Tube-Reptation-Modells, das die am häufigsten verwendete und wohletablierte theoretische Beschreibung der verschränkten Polymerschmelzen ist. Die Zeitabhängigkeit der Segmentverschiebung, die in Poly(ethylen-alt-propylen) erhalten wurde, stimmt gut mit den entsprechenden Vorhersagen des Modells überein. Es werden drei verschiedene Potenzgesetze beobachtet, die im Rahmen des Tube-Reptationsmodells dem Rouse-, den inkohärenten und den kohärenten Reptationsregimen zugeschrieben werden. Wichtig ist, dass der Übergang von der inkohärenten zur kohärenten Reptation bei dieser Polymerspezies mit einem so hohen Molekulargewicht zum ersten Mal experimentell beschrieben wird. Auf der anderen Seite zeigen Segmentverschiebungen, die in den Polyethylenoxidschmelzen mit unterschiedlichen Molekulargewichten erhalten werden, keine Merkmale der extrem langsamen t^0.25 Dynamik, die für die inkohärente Reptation vorhergesagt wurde. Dieses Ergebnis ist konsistent und wird durch andere NMR-Techniken bei kürzeren und längeren Zeiten bestätigt. Dieser Befund stellt die universelle Anwendbarkeit des Konzepts der Röhre für alle weiteren Polymerspezies in Frage. Darüber hinaus zeigt die Abschätzung der relativen Beiträge der intra- und intermolekularen dipolaren Wechselwirkungen zur transversalen Relaxation ein ähnliches Verhalten für alle untersuchten Polymerschmelzen. Interessanterweise steht dieses Verhalten im Widerspruch zur Vorhersage des Tube-Repation-Modells und zeigt keine Merkmale, die für die hoch anisotrope Bewegung innerhalb der fiktiven Röhre erwartet werden. Die Übereinstimmung dieses Ergebnisses in allen Proben lässt eine noch allgemeinere Frage nach der Gültigkeit des gesamten Konzeptes des Tube-Reptationsmodells aufkommen.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2018000046
Thaha, Yudi Nugraha;
Synthesis and electrochemical applications of boron- and phosphorus-doped carbon nanotubes. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (vii, 117 Blätter)
Technische Universität Ilmenau, Dissertation 2018

Bor-dotierte (B-MWCNT) und Phosphor-dotierte (P-MWCNT) Kohlenstoffnanoröhren wurde mittels chemischer Gasphasenabscheidungstechnik erfolgreich hergestellt. Durch die Verwendung unterschiedlicher Kohlenstoffquellen und Dotierungsmitteln zeigen die Phosphor- und Bor-dotierten MWCNTs unterschiedliche Strukturen. Dabei treten neben vertikal ausgerichteten, hohlen vertikal ausgerichteten, Y-förmige auch horizontal orientierte Nanoröhren auf. Die dotierten MWCNTs wurden unter Verwendung von Raman-Spektroskopie, Rasterelektronenmikroskopie, Transmissionselektronenmikroskopie (in Kombination mit Elektronenenergieverlustspektroskopie) und Röntgen-Photoelektron Spektroskopie umfassend charakterisiert. Neben der physikalischen Charakterisierung wurden sowohl die B-MWCNTs als auch die P-MWCNTs elektrochemisch untersucht, indem als Modellredoxsystem [Fe(CN)6]^3-/4- in KCl Lösung angewendet wurde. Die hergestellten Elektroden wurden dann für das biologisch relevante Dopamin/Dopaminchinone Redox-System (in Phosphatpufferlösung, pH=7) angewendet. Hierfür wurden sowohl die Zyklische Voltametrie als auch die Elektrochemische Impedanz Spektroskopie verwendet. Im Folgenden wurden die Effekte der Oberflächen-funktionalisierung mit Goldnanopartikeln (AuNP), Oxidation mit Piranha Lösung und Säurebehandlung mit HCl auf die elektrochemischen Eigenschaften von B-MWCNTs und P-MWCNTs studiert. Auch hier wurde sowohl das Modellesystem [Fe(CN)6]^3-/4- als auch der Anwendungsfall mit dem Dopamin/Dopaminchinone Redoxsystem betrachtet. Die Ergebnisse zeigen, dass das elektrochemische Verhalten von B-MWCNTs und P-MWCNTs stark durch die Nanoröhrenstruktur und Konfiguration (einzelne Nanoröhren oder Cluster- Nanoröhren), sowie durch die Anwesenheit von amorphen Kohlenstoffstrukturen auf der Nanoröhrenoberfläche beeinflusst wird. Y-förmige B-MWCNTs zeigen einen schnelleren Elektronentransfer im Vergleich zu vertikal ausgerichteten dotierten B-MWCNTs und P-MWCNTs welche teilweise mit amorphen Kohlenstoffstrukturen bedeckt sind. Die Kinetik für den Elektronentransfer auf Y-förmige B-MWCNTs und P-MWCNTs mit Kohlenstoff auf der Oberfläche lässt sich durch den Einsatz von AuNP weiter verstärken.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2018000035
Denk, Frank;
Beitrag zur Charakterisierung und Systemintegration schnellschaltender elektromagnetischer Aktuatoren - insbesondere Einspritzventile für Ottomotoren. - Ilmenau, 2018. - XI, 140 Seiten
Technische Universität Ilmenau, Dissertation 2018

Der gesetzlich zulässige Schadstoffausstoß von Verbrennungsmotoren erfordert die Entwicklung neuer Ansteuerstrategien von Kraftstoffeinspritzventilen. Die vorliegende Arbeit untersucht das einspritzrelevante System aus Elektronik, Software, Einspritzventil sowie Hydraulik und entwickelt neue elektromagnetische Methoden zur Optimierung des hydraulischen Einspritzvorgangs. Insbesondere die dynamischen Vorgänge des hydraulischen Öffnens und des hydraulischen Schließens bilden den Schwerpunkt der Untersuchungen. Auf Basis der Maxwellschen Gleichungen wird dargestellt, dass das dynamische Verhalten des Einspritzventils vor allem durch die Reluktanzkraft erfolgt. Es wird gezeigt, dass die elektromagnetischen Ansteuerparameter Spulenspannung und Spulenstrom bei einem Einspritzventil einen signifikanten Einfluss auf den hydraulischen Einspritzvorgang haben. Die Eigenschaft, dass die mechanisch-hydraulische Reaktion magneto-elektrisch auf die Ansteuerung zurückwirkt, wird genutzt, um den Einspritzablauf zu analysieren. Durch die Parametervariation der Ansteuerung und der Analyse der sensorischen Rückmeldung wird ein robustes hydraulisches Öffnen, ein sicheres hydraulisches Offenhalten und ein schnelles hydraulisches Schließen mit der dafür benötigten elektrischen Energie abgestimmt und optimiert. Mit speziellen Verfahren wird der magnetische Fluss des Einspritzventils berechnet. Diese zeigen eine im Kraftfahrzeugbereich neue Möglichkeit der effizienten Abstimmung des elektrischen Energieeintrags sowie der hydraulischen Reaktion und bieten einen Ausblick in zukünftige Regelkonzepte. Diese Arbeit lehnt sich streng an die Umgebungsbedingungen in einem heutigen elektrischen Bordnetz an. Damit ist die Möglichkeit gegeben, die Ergebnisse technisch in Serienapplikationen umzusetzen.