Konferenzbeiträge ab 2018

Anzahl der Treffer: 1328
Erstellt: Sat, 18 May 2024 23:15:03 +0200 in 0.0718 sec


Alfonso, Jesus; Rodriguez, Jose Manuel; Bernad, Carlos; Beliautsou, Viktar; Ivanov, Valentin; Castellanos, Jose Angel
Geographically distributed real-time co-simulation of electric vehicle. - In: 8th-2022 International Conference on Control, Decision and Information Technologies (CoDIT'22), (2022), S. 1002-1007

The present paper shows the capabilities of a distributed real-time co-simulation environment merging simulation models and testing facilities for developing and verifying electric vehicles. This environment has been developed in the framework of the XILforEV project and the presented case is focused on a ride control with a real suspension installed on a test bench in Spain, which uses real-time information from a complete vehicle model in Germany. Given the long distance between both sites, it has been necessary to develop a specific delay compensation algorithm. This algorithm is general enough to be used in other real-time co-simulation frameworks. In the present work, the system architecture including the communication compensation is described and successfully experimentally validated.



https://doi.org/10.1109/CoDIT55151.2022.9804062
Asghar, Muhammad Talal; Kupsch, Christian; Frank, Thomas; Schwierz, Frank
Low-cost strain gauge integration in ceramics for force sensor applications. - In: 2022 45th International Spring Seminar on Electronics Technology (ISSE), (2022), S. 1-7

A popular solution for force sensor applications is the integration of strain gauges in microelectromechanical systems. Before such a system can be used, it has to be tested and characterized. Typically, this requires a complete strain gauge integration within an electronic carrier such as ceramics in a pressure sintering process with a typical force of 5000 N acting on a 100 mm x 100 mm specimen, which is costly and mostly not available for laboratory scale investigations due to lack of pressure sintering furnace. To overcome this challenge, we describe a method for the SOI (Silicon-on-insulator) strain gauge integration in ceramics with a force of 3 - 25 N upon a 7 mm × 9 mm specimen. A leverbased pressure application tool for the 0.04 - 0.34 MPa pressure range was successfully employed for this purpose. Targeting a single process configuration of chip-on-ceramic, the reliability of the process results is studied in terms of mechanical stability and electrical connectivity of strain gauge. Finally, the integrated strain gauge is mounted to a 3-point test bench to demonstrate its functionality as a force sensor. The described simple and low-cost fabrication process of the order of € 100 is useful for sensors integration within ceramics, not only for research laboratories but also for industrial manufacturers.



https://doi.org/10.1109/ISSE54558.2022.9812829
Blumröder, Ulrike; Köchert, Paul; Fröhlich, Thomas; Füßl, Roland; Ortlepp, Ingo; Gerhardt, Uwe; Mastylo, Rostyslav; Flügge, Jens; Bosse, Harald; Manske, Eberhard
Ultrastable, traceable optical frequencies for length metrology in long-range nanopositioning and nanomeasuring machines. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 381-384

Schulze, Sven; Arumugam, Kumar; Theska, René; Shaw, Gordon
Development of a high precision balance for measuring quantity of dispensed fluid as a new calibration reference for the becquerel. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 337-340

Huaman, Alex S.; Gorges, Stephan; Katzschmann, Michael; Hesse, Steffen; Fröhlich, Thomas; Manske, Eberhard
Investigations on the tracking control and performance of a long stroke vertical nanopositioning drive. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 233-236

Hebenstreit, Roman; Wedrich, Karin; Strehle, Steffen; Manske, Eberhard; Theska, René
First prototype of a positioning device with subatomic resolution. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 97-100

In the forthgoing work on a device that enables subatomic resolved highly reproducible positioning, a first prototype is here presented. The entire positioning system including the actuator, sensor and guiding mechanism, is realized as a micro-electro-mechanical system (MEMS) on chip level, based on silicon-on-insulator (SOI) technology. A modular printed circuit board acts as the mechanical as well as the electrical contacting interface for the silicon chip. First variants of a linear positioning system comprising axisymmetric double parallel crank structure are investigated. Pivot joints as flexure hinges with concentrated compliance are deployed. These hinges show minimal rotational axis displacement for small angles of deflection, thus ensuring smallest deviations to a straight-line path of the linear guiding mechanism. An electrostatic comb actuator transmits forces contactless to minimize over constraints. A measuring bridge in differential mode utilizes the same comb structures to measure the table position based on the capacitance change. Estimating the position resolution, limited by the resolution of the capacitive sensor, a measurable step width below 50 pm can be expected. In further steps, the device will be a platform to be equipped with a lattice-scale-based position measurement system according to achieve an even higher resolution and reproducibility.



Weigert, Florian; Wolf, Matthias; Theska, René
Model-based determination of the reproducibility of kinematic couplings. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 87-90

Wittke, Martin; Wolf, Matthias; Weigert, Florian; Darnieder, Maximilian; Gerlach, Erik; Zimmermann, Klaus; Theska, René
Investigations on a torque-compensating adjustment drive for mechanically sensitive devices. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 81-82

Torres Melgarejo, Mario André; Wittke, Martin; Theska, René
Adjustable stiffness compensation for monolithic high-precision mechanisms. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 67-68

Keck, Lorenz; Seifert, Frank; Schlamminger, Stephan; Newell, David; Theska, René; Haddad, Darine
An enhanced mechanism for a Kibble balance at the National Institute of Standards and Technology. - In: Proceedings of the 22nd International Conference of the European Society for Precision Engineering and Nanotechnology, (2022), S. 55-58