Dissertationen ab 2018

Anzahl der Treffer: 226
Erstellt: Thu, 02 May 2024 23:17:25 +0200 in 0.0463 sec


Alazab Elkhouly, Mostafa;
Standardized testing conditions for satellite communications on-the-move (SOTM) terminals. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (xii, 123 Seiten)
Technische Universität Ilmenau, Dissertation 2018

Von Beginn an haben Satelliten Kommunikationsdienste über große Distanzen bereitgestellt. Endgeräte für die mobile Satellitenkommunikation sind mit einer Nachführeinrichtung ausgestattet, um den verwendeten Satelliten bei Bewegung zu verfolgen. Für höchstmöglichen Datendurchsatz und um Störaussendungen zu benachbarten Satelliten zu vermeiden bedarf es akkurater Nachführalgorithmen. Die Prüfung solcher Satcom-On-The-Move (SOTM) Terminals wird dabei zunehmend wichtig, wie Betreiber von Satellitendiensten anhand des negativen Einflusses suboptimaler Geräte auf ihre Infrastruktur bemerken. Herkömmlich werden SOTM-Terminals im Rahmen von Feldtests mit operativen Satelliten geprüft. Solche Tests sind allerdings nicht exakt wiederholbar. Die Reproduzierbarkeit von Tests ist jedoch insbesondere beim Vergleichstest mehrerer Terminals wichtig. Dieser Beitrag widmet sich der Untersuchung eines umfassenden Qualifikationstests von SOTM-Terminals innerhalb einer Laborumgebung, welche Reproduzierbarkeit ermöglicht. Wesentlicher Vorteil der Laborumgebung ist die Möglichkeit, Terminals unter realitätsnahen Bedingungen zu testen - ohne dass reale Satelliten benötigt werden, was die Kosten reduziert. Diese Arbeit behandelt darüber hinaus die Testmethodik in der Fraunhofer-Testanlage Facility for Over-the-air Research and Testing (FORTE). Wichtige Leistungsparameter wie Nachführgenauigkeit (Antenna De-pointing) und Nachbarsatellitenstörung (Adjacent Satellite Interference, ASI) können akkurat gemessen und ausgewertet werden. Die verwendete Methodik zur Gewinnung der vorgeschlagenen Profile wird in der Arbeit ebenso behandelt wie Testergebnisse von Ka-Band-SOTM Terminals. Wesentlicher Beitrag dieser Arbeit ist die Entwicklung von Bewegungs- und Abschattungsprofilen für SOTM-Terminaltests. Bewegungsprofilen für die Landmobile und Maritime Umgebungen wurden entwickelt. Für jede Umgebung, zwei Klassen wurden definiert, Klasse A mit Profile die hohe Bewegungsdynamik haben und Klasse B mit Profile die relativ niedrige Bewegungsdynamik haben. Die vorgeschlagenen Bewegungsprofile wurden in der GVF-105 Standard des Global VSAT Forums berücksichtigt. Die Standardisierung solcher Profile ist notwendig, um einen fairen Leistungsvergleich verschiedener Terminals zu garantieren und solche Geräte sicher zu identifizieren, welche Interferenzen im Satellitennetz verursachen. Dies bedeutet im Ergebnis einen Gewinn für die gesamte Satellitenindustrie.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2018000470
Stürzel, Thomas;
Maßnahmen zur Verbesserung der mechanischen Eigenschaften von Recycling Al-Druckgusslegierungen für Powertrain-Anwendungen. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (xxviii, 160 Seiten, Seite xxix-lxx)
Technische Universität Ilmenau, Dissertation 2018

Im Rahmen dieser Arbeit wird das Eigenschaftsspektrum der Al-Recyclinglegierung 226D (AlSi9Cu3Fe) unter Optimierung der Zusammensetzung und Wärmebehandlung erweitert. Neben thermodynamischen Simulationen mit JMatPro® und der Vorgehensweise nach DfSS Design-for-Six-Sigma werden Legierungsversuche im Labor- und Industriemaßstab, Makrohärte- und Dichtemessungen, Kerbschlagbiege- und Zugversuche, Bestimmung der Dauerschwellfestigkeit, DSC- und Dilatometermessungen sowie Licht- und Rasterelektronenmikroskopie mit EDX und zudem Röntgendiffraktometrie durchgeführt. Die Kombination aus DfSS und JMatPro® liefert im ersten Schritt eine Einschränkung der Legierung 226D hinsichtlich intermetallischer Phasen und Dehngrenze. Laborversuche zeigen durch 0,1 wt% Mo die Unterdrückung von nadeligen ß-Al5FeSi Phasen und stattdessen die Bildung verrundeter neuartiger AlFeMoMnSi-Phasen. Dies führt zu einer um bis zu 35 % gesteigerten Bruchdehnung. Der Übertrag auf ein Druckguss-Kurbelgehäuse zeigt ebenso eine Kennwertsteigerung. Dabei können Gefügebestandteile sicher mit JMatPro® vorhergesagt werden. Dies wird durch REM und XRD bestätigt. Die reduzierte Auslagerung T5mod 200 zeigt im Vergleich zur Referenz bereits eine signifikant höhere Dehngrenze und teils erhöhte Dauerschwellfestigkeit bis Pü50 = 57 MPa. Diese Steigerungen sind auf veränderte Ausscheidungsspezies und -dichte zurückzuführen. Optimiertes Lösungsglühen findet bei 738 K (465 ˚C) mit 3 h Haltezeit statt und liefert in Kombination mit reduzierter Auslagerung bei 473 K (200 ˚C) die höchste Dehngrenze bis 300 MPa. Dies führt auch bei der Kurzzeitwarmfestigkeit zu deutlicher Kennwertsteigerung. Bei 500 h Temperaturbelastung ist allerdings nur bis 453 K (180 ˚C) ein Vorteil zu erzielen, wohingegen nach 473 K (200 ˚C) / 500 h alle Varianten auf Rp0,2 [rund] 150 MPa abfallen. Der Spagat zwischen hoher Dehngrenze und geringem irreversiblem thermischem Wachstum zeigt sich insbesondere zwischen Auslagerungstemperaturen sowie ein- bzw. zweistufiger Wärmebehandlung. Durch Optimierung der Zusammensetzung und Wärmebehandlung wird eine deutliche Steigerung der korrelierenden Werte Quality-Index QIDJR und Sicherheitsprodukt Rp0,2 x A erreicht. Außerdem besteht ein tendenzieller Zusammenhang zwischen Sicherheitsprodukt und Kerbschlagarbeit.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2018000432
Sauerteig, Daniel;
Implementierung und Parametrierung eines physikalischen Simulationsmodells einer Lithium-Ionen Zelle zur Analyse elektrochemisch-mechanischer Wechselwirkungen. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (VI, 117 Seiten, Seite VIII-XXIV)
Technische Universität Ilmenau, Dissertation 2018

Die Interkalationsreaktion von Lithium (Li) in Li-Ionen Batterien ist häufig mit signifikanten Volumenänderungen der Aktivmaterialien verbunden. Zusätzlich kommt es über die Lebensdauer zu einer irreversiblen mechanischen Ausdehnung, die u.a. durch die Reaktion von Elektrolytkomponenten an der Elektrodenoberfläche hervorgerufen wird. Die Limitierung des mechanischen Bauraums in Batteriezellen und -systemen führt in Folge der Elektrodenausdehnung zu mechanische Spannungen, die nachgewiesener Weise die Zellalterung und damit die Eigenschaften des elektrochemischen Systems beeinflussen. Für eine fundamentale Beschreibung des mechanischen Einflusses sind grundlegende elektrochemische Methoden notwendig. Zur physikalischen Beschreibung dieser Effekte stellt diese Arbeit ein umfassendes Simulationsmodell vor. Die elektrochemischen Gleichungen basieren auf dem Modell nach Newman, welches um einen mechanischen und thermischen Ansatz ergänzt wurde. Die mechanische Erweiterung ermöglicht die Berechnung der Volumenänderung der Komponenten in Abhängigkeit der Li-Konzentration und der mechanischen Randbedingungen. Die mechanisch-elektrochemische Kopplung ist dadurch abgebildet, dass die herrschenden mechanischen Drücke die Porosität und somit die ionischen Transporteigenschaften der porösen Elektroden und des Separators beeinflussen. Die temperatur- und konzentrationsabhängige Parametrisierung des elektrochemisch-mechanischen Modells wird vollständig in dieser Arbeit durchgeführt. Die Bestimmung der Eigenschaften der verwendeten Aktivmaterialien erfolgt durch Anwendung spezieller Dreielektroden-Zellen, wodurch Anode und Kathode getrennt voneinander parametrisiert werden. Besonders dünne Elektrodenschichten minimieren dabei den Einfluss des Elektrolyten. Die physikalische Beziehung zwischen dem mechanischen Druck und der ionischen Leitfähigkeit der Komponenten konnte direkt gemessen und mittels Simulationsergebnissen bestätigt werden. Der physikalische Modellansatz verdeutlicht, dass eine mechanische Verspannung von Zellen die Entstehung von Li-Konzentrationsgradienten während der Ladung und Entladung verstärkt.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2018000407
Behrens, Roland;
Biomechanische Belastungsgrenzen für Mensch-Maschine-Interaktionen in der kollaborativen Robotik. - Ilmenau, 2018. - xiv, 195, LIII Seiten
Technische Universität Ilmenau, Dissertation 2018

In industriellen Produktionsbetrieben halten kollaborative Roboter verstärkt Einzug, um Menschen bei manuellen Tätigkeiten zu unterstützen. Roboter und Menschen arbeiten zeitgleich und miteinander in gemeinsamen Arbeitsräumen. Die Mensch-Roboter-Kollaboration beschreibt die engste und flexibelste Form dieser arbeitsteiligen Zusammenführung und unterliegt strengen Sicherheitsanforderungen. Sie gewährleisten, dass der kollaborative Roboter kein gesundheitliches Risiko für den Menschen darstellt. Die größten Gefahren für den Menschen gehen von einer Kollision mit dem Roboter oder einer Klemmung von Körperteilen durch den Roboter aus. Für beide Gefahren schreibt ISO/TS 15066 vor, dass der Eintritt einer Verletzung durch die Einhaltung von biomechanischen Belastungsgrenzen zu vermeiden ist. Derzeit verzeichnet ISO/TS 15066 ausschließlich Grenzwerte für Situationen, bei denen die Gefahr von einer Klemmung ausgeht. Grenzwerte für Kollisionen fehlen bisher. Die vorliegende Arbeit schließt diese Lücke. Sie stellt Ergebnisse aus einer umfangreichen Literaturrecherche vor, die den aktuellen Kenntnisstand zu stoßartigen Belastungen und ihren Verletzungsfolgen aufzeigen. Keine der gesichteten Quellen beinhaltet Belastungswerte, die sich zur Festlegung von Grenzwerten eignen, um Menschen vor Verletzungen durch Kollisionen mit einem Roboter zu schützen. Ausgehend von einer sorgfältigen Analyse zu Hergang und Wirkung eines Stoßes wird im weiteren Verlauf der Arbeit eine Probandenstudie entwickelt, deren Design die spezifischen Anforderungen an die gesuchten Grenzwerte erfüllt. Der Methoden- und Versuchsplan sah vor, die Probanden an bis zu 21 Körperstellen mit einem Stoßpendel zu belasten. Im Zuge der Versuche wurde die Belastungsintensität schrittweise erhöht, bis ein Schmerz oder eine leichte Verletzung auftraten (in Form eines Hämatoms oder einer Schwellung). Die Auswertung der Versuche zum Schmerzeintritt ergab eine Tabelle mit den gesuchten Grenzwerten, die sich dazu eignen, ISO/TS 15066 zu ergänzen. Aus dem Studienteil zum Verletzungseintritt gingen aufgrund eines kleineren Probandenkollektivs allenfalls Orientierungswerte hervor. Trotz ihrer Vorläufigkeit vermitteln sie einen interessanten Einblick auf jene Form einer Kollisionsfolge. Der abschließende Vergleich der hier ermittelten Grenz- und Orientierungswerte mit vergleichbaren Sekundärdaten zeigt, dass die Arbeit den aktuellen Kenntnisstand in der Wissenschaft fortschreibt. Darüber hinaus gehen mit den Ergebnissen zahlreiche und interessante Anknüpfungspunkte für weiterführende Arbeiten einher.



Xu, Shipu;
Template-assisted fabrications of nanostructure arrays for gas-sensing applications. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (XII, 91 Seiten)
Technische Universität Ilmenau, Dissertation 2018

Hochempfindliche Gasdetektion stellt hohe Anforderungen an die zu verwendende Messplattform, für welche Nanostrukturarray-basierte Messfühler vielversprechende Kandidaten sind. Die Template gestützte Methode stellt eine effektive Grundlage zur Herstellung verschiedener Nanostrukturarrays dar. In dieser Arbeit werden mit Hilfe von ultradünnen Aluminiumoxid-Membranen oder kolloidalen Monolayern als Templat zwei verschiedene Arten von Nanostrukturarray-Gassensoren (Nanorod-Arrays und dünne Schichten mit angeordneten dreieckigen Wölbungen) hergestellt, welche aufgrund ihrer Morphologie eine erhöhte Leistungsfähigkeit aufweisen. Bei der Gasdetektion mit SnO2-Nanorod-Arrays wurde die optimierte Gasmessung durch Anpassung der Nanorod-Länge auf 20 bis 340 nm erreicht. Charakterisiert wird sie durch eine niedrige Detektionsschwelle von 3 ppm Ethanol-Gas bei Raumtemperatur und einer Nanorod-Länge von 40 nm. Bei den SnO2-Dünnschicht-Gassensoren erhöhen die dreieckigen konvexen Wölbungen die aktive Adsorptionsfläche für die Gasmessempfindlichkeit. Die Anordnung dieser adsorptionsaktiven Punkte mit unterschiedlicher Periodizität (289, 433, 577 und 1154 nm) zeigt eine Sensitivitätsabhängigkeit auf, wobei eine niedrige Detektionsschwelle von 6 ppm Ethanol-Gas erreicht wird. Die obigen Korrelationen zwischen Morphologie und Leistungsfähigkeit bestätigen, dass die Template gestützte Herstellung von Nanostrukturarrays zur Produktion von hochleistungsfähigen Gassensoren effizient genutzt werden kann.



https://www.db-thueringen.de/receive/dbt_mods_00037471
Brumm, Stefan;
Leistungssteigerung beim Lichtbogenschweißen durch Verwendung von Drahtelektroden größeren Durchmessers. - Ilmenau : Universitätsverlag Ilmenau, 2018. - 1 Online-Ressource (xvii, 141 Seiten). - (Fertigungstechnik - aus den Grundlagen für die Anwendung ; Band 6)
Technische Universität Ilmenau, Dissertation 2018

Bei der Herstellung geschweißter Konstruktionen ergeben sich heute aufgrund wirtschaftlicher Gesichtspunkte hohe Anforderungen an die Quantität, ohne dass dabei die Qualität vernachlässigt werden kann. Das Schweißverfahren bestimmt nicht nur die Mikrostruktur des erstarrten Gefüges und somit die mechanisch-technologischen Verbindungseigenschaften, sondern auch die Wirtschaftlichkeit. Bisher werden beim MSG-Schweißen Drahtelektroden mit Durchmessern bis zu 2,4 mm eingesetzt. In der vorliegenden Arbeit wurde untersucht, wie sich die Vergrößerung des Drahtelektrodendurchmessers auf den MSG-Prozess in seiner Gesamtheit auswirkt. Dafür wurde der Stand der Technik der Hochleistungslichtbogenschweißverfahren beleuchtet und ein Modell aufgestellt. Die experimentellen Versuche erfolgten mit einer vollelektronischen, sekundär getakteten Hochleistungs-Stromquelle und teilten sich in zwei Schwerpunkte. Zum einen zur Schaffung von Grundlagen zur Lichtbogenausbildung sowie zum Prozessverständnis und zum anderen zur Qualifizierung des MSG-Dickdraht-Verfahrens. Dabei stand die Wechselwirkung zwischen Lichtbogen und Schweißnaht im Mittelpunkt. Überprüft wurden mögliche technologische Vorteile. Für die Untersuchung kamen Massivdrahtelektroden (G3Si1) mit unterschiedlichen Durchmessern (dd = 3,2 und 4,0 mm) zum Einsatz. Zur Prozess- und Lichtbogenanalyse wurde auf einem rohrförmigen Probekörper aus niedrig legiertem Stahl sowohl mit CV- als auch CC-Charakteristik geschweißt. Messtechnisch erfasst wurden Stromstärke und Spannung. Synchronisierte Hochgeschwindigkeitsaufnahmen dienten der Betrachtung und Beurteilung von Tropfenentstehung, -ablösung und Lichtbogenausbildung sowie Schmelzbaddynamik. Für die Ermittlung der Schweißverbindungseigenschaften wurden Bleche mit den Dicken von 12, 15 und 20 mm geschweißt. Durch Versuche konnte die optimale Schutzgaszumischung von 30 % Ar Rest CO2 in Bezug auf die Spritzerbildung und das innere sowie äußere Nahtaussehen ermittelt werden. Höhere Anteile an Ar waren nicht zielführend. Die umfassende Prozess- und Lichtbogenanalyse zeigte, dass beim MSG-Schweißen mit "dicken" Drahtelektroden die klassische schweißleistungsabhängige Einteilung der Lichtbogenarten, wie vom MSG-Schweißen mit Drahtdurchmessern bis 1,6 mm bekannt, in Kurz-, Übergangs- und Sprühlichtbogen nicht möglich ist. Ein sehr kurzer Lichtbogen, der unterhalb der Blechoberfläche brennt, erwies sich in allen untersuchten Leistungsbereichen als vorteilhaft, da die Spritzerhäufigkeit mit Steigerung der Lichtbogenlänge zunimmt. Aufgrund der hohen Regelgeschwindigkeit der Schweißmaschine ist ein Schweißen mit solch kurzen Lichtbögen möglich. Bei langen Lichtbögen, die aus der Blechoberfläche heraustreten, wird das Schweißgut aus dem Bereich der Fügezone verdrängt und es kommt zum "Schneid-Effekt". Das Lichtbogenplasma ist dominiert von Metalldampf. Dadurch hat die Schutzgaszusammensetzung keinen wesentlichen Einfluss auf die innere Schweißnahtgeometrie. Vergleichende Schweißversuche zeigten, dass bei Verwendung der CC-Kennlinie sowohl der Prozess stabiler abläuft als auch die Spritzerbildung geringer ist als bei Nutzung der CV-Kennlinie. Bei jeder Tropfenablösung ändert sich die Lichtbogenlänge, die durch die Regelung der Schweißmaschine ausgeglichen wird. Eine Delta U-Regelung verursacht eine Spannungsänderung, die sich auf eine spritzerarme Tropfenablösung positiv auswirkt. Hingegen verursacht die Delta I-Regelung bei einer Lichtbogenlängenänderung Stromschwankungen von bis zu 400 A, was dazu führt, dass die Tropfen unter Entstehung vieler Spritzer regelrecht weggesprengt werden. Für die Schweißverbindungen wurde deshalb mit der CC-Kennlinie gearbeitet. Beim UP-Schweißen wird die Schweißmaschinen-Kennlinie nach dem Drahtdurchmesser gewählt. Eine solche Auswahl kann beim MSG-Dickdraht-Schweißen nicht erfolgen. Die vom UP-Schweißen bekannte Faustformel der Strombelastbarkeit der Drahtelektrode von 200 multipliziert mit dem Drahtdurchmesser (Ergebnis in Ampere) kann für das MSG-Dickdraht-Schweißen angewendet werden. Es ist ein stabiler Prozess mit akzeptabler Schweißnahtqualität beim MSG-Schweißen mit einem Drahtelektrodendurchmesser von 3,2 mm und einer Stromstärke von 640 A möglich. Abschmelzleistungen von über 8 kg/h sind ohne Weiteres erreichbar. Durch Änderung der Streckenenergie infolge der Erhöhung der Stromstärke ist die Einschweißtiefe beeinflussbar. Ein weiterer Einflussfaktor auf die innere Schweißnahtgeometrie ist die Schweißgeschwindigkeit. Eine Steigerung der Schweißgeschwindigkeit führt aufgrund der Senkung der Streckenenergie zur Reduzierung der Einschweißtiefe. Mit dem verwendeten Versuchsaufbau konnte eine maximale Schweißgeschwindigkeit von 120 cm/min realisiert werden. Die obere und untere Grenze für die Schweißgeschwindigkeit ist abhängig von der Schweißleistung. Im Vergleich mit dem UP-Schweißen ist in Bezug auf die Nahtausbildung festzuhalten, dass die Oberflächenschuppung und Formung des Nahtäußeren beim UP-Schweißen wesentlich besser ausfällt. Eine Einstellung der Nahtbreite über die Lichtbogenspannung, wie es beim UP-Schweißen möglich ist, kann bei MSG-Dickdraht-Schweißen aufgrund der sehr kurz einzustellenden Lichtbögen nicht realisiert werden. Die Nahtbreite ist nur geringfügig über die Schweißgeschwindigkeit einstellbar. Es muss erwähnt werden, dass das MSG-Dickdraht-Schweißen im Gegensatz zum UP-Schweißen ein sehr sensibler Prozess ist, bei dem kleinste Prozessinstabilitäten zu Poren und -nestern im Schweißgut führen können. Um die Qualität der Schweißverbindung zu bestimmen, wurden verschiedene zerstörungsfreie und zerstörende Prüfverfahren eingesetzt. Die Sichtprüfungen sowie die Farbeindringprüfungen ergaben, dass die Schweißnähte hinsichtlich der Oberfläche in Bezug auf Einbrandkerben, Oberflächenporen und Risse bis auf wenige Ausnahmen eine hohe Qualität aufwiesen. Bei der Durchstrahlungsprüfung wurde festgestellt, dass aufgrund einer diskontinuierlichen Drahtförderung und Schweißbewegungen Poren im Nahtinneren entstanden. Porenfreie Schweißnähte können aber bei exakter Drahtförderung und kontinuierlicher Schweißgeschwindigkeit prozesssicher erzeugt werden. Härtespitzen im Bereich der Wärmeeinflusszone an der Schmelzlinie erreichen Maximalwerte von 326 HV10. Darüber hinaus erwies sich die Kerbschlagzähigkeit des Schweißgutes als weitaus besser als die des Grundwerkstoffes. Die Zugproben versagten bis auf eine Ausnahme im Grundwerkstoff. Ursache hierfür war ein Porennest am Nahtende, welches durch die oben genannte Prozessinstabilität entstand. Bei Einhaltung aller prozessbedingten Besonderheiten und unter Beachtung der verfahrensspezifischen Randbedingungen können mit dem MSG-Dickdraht-Verfahren anforderungsgerechte Schweißnähte hergestellt werden. Die Untersuchungen ergaben, dass die Lage/Gegenlage-Technik empfehlenswert ist. Schweißungen an 20 mm Blechen konnten mit einer Lage pro Seite und Schweißgeschwindigkeiten von bis zu 90 cm/min prozesssicher ausgeführt werden.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2018000361
Xu, Haifeng;
Hochpräzise Bestimmung der Form- und Orthogonalitätsabweichungen einer Spiegelecke und Untersuchung des Verhaltens unter veränderlichen Umweltbedingungen. - Ilmenau : Universitätsverlag Ilmenau, 2018. - 1 Online-Ressource (XVI, 179 Seiten)
Technische Universität Ilmenau, Dissertation 2017

Dissertation erschienen unter dem Titel: Hochpräzise interferometrische Bestimmung der Formabweichungen einer Spiegelecke und Untersuchung des Verhaltens unter veränderlichen Umweltbedingungen

Die rasanten Entwicklungen der letzten Jahre insbesondere in der Halbleitertechnik und in verschiedenen Präzisionstechnologien erfordern immer präzisere Fertigungsprozesse, die bis an die physikalischen Grenzen vordringen. Deshalb wurde am Institut für Prozessmess- und Sensortechnik der Technischen Universität Ilmenau eine neue Nanopositionier- und Nanomessmaschine (NPM-Maschine) NPMM-200 mit einem Messvolumen von 200 mm x 200 mm x 25 mm und einer gesicherten Messauflösung von 80 pm entwickelt. Das Koordinatensystem der NPM-Maschinen wird durch das verwendete Interferometer-Raumspiegelsystem gebildet. Die Herstellung hochpräziser Spiegelflächen einer Raumspiegelecke mit höchsten Anforderungen an die Ebenheit ist nicht nur technisch schwierig, sondern auch sehr kostspielig. Die Fertigungstoleranzen limitieren die Ebenheit der Spiegelflächen der Raumspiegelecke und deren Winkellage zueinander. Daher ist es notwendig, vorhandene systematische Abweichungen der Spiegelflächen zu ermitteln und zu korrigieren. Gegenstand der vorliegenden Arbeit ist die hochpräzise Bestimmung der Topographien der Spiegelflächen der Raumspiegelecke mit einem Fizeau-Interferometer und der Stitching-Technologie. Das Subapertur-Stitching-Interferometer für sehr große Messbereiche bis 350 mm x 350 mm besteht aus einem hochpräzisen XY-Verschiebetisch, einem handelsüblichen Fizeau-Phasenschiebe-Interferometer mit einer 6 Zoll Apertur und einer Raumspiegeleckebaugruppe mit integrierter Justiereinrichtung. Eine speziell entwickelte Software "SmartStitching" wird verwendet, um die aufgenommenen Messdaten der Subaperturen zu einer gesamten Topographie zu rekonstruieren. Der Stitching-Algorithmus kompensiert nicht nur Positionierfehler, die durch Führungsfehler des Lineartisches während der Verschiebung verursacht werden, sondern auch systematische Fehler wie z.B. Abbildungsfehler. Die absolute Topographie des Referenzspiegels wurde im Vorfeld durch den Multi-Rotations-Drei-Platten-Test kalibriert. Bei bekannter Formabweichung des Referenzspiegels kann der vorhandene systematische Fehler des Phasenschiebe-Interferometers korrigiert werden. Die Topographie des Referenzspiegels wurde dann im Datenverarbeitungssystem gespeichert, damit sie zur Korrektur systematischer Fehler verwendet werden kann. Weiterhin werden in dieser Arbeit andere Einflussfaktoren untersucht, z.B. Messfehler, die durch das Subaperture-Stiching-Interferometer verursacht werden, und dem akkumulierten Fehler, der durch den Stitching-Algorithmus verursacht wird. Ein weiterer Schwerpunkt der vorliegenden Arbeit ist die hochpräzise Bestimmung der Abweichung der Orthogonalität zwischen den Messspiegeln (xy-, xz- und yz-Messspiegel) einer Raumspiegelecke. Zwei Messverfahren wurden für die Bestimmung der Winkelfehler eingesetzt. Die Winkel zwischen den x- und y-Spiegeln werden mit Hilfe von zwei Pentaprismen, einem kalibrierten rechtwinkligen Prisma und einem hochauflösenden elektronischen Autokollimator bestimmt. Diese Kalibriermethode verwendet zwei horizontal ausgerichtete Pentaprismen und ein hochpräzises rechtwinkliges Prisma als 90˚-Winkelnormal, um Winkelfehler zwischen der x- und y-Spiegelfläche einer Raumspiegelecke zu bestimmen. Das hochpräzise rechtwinklige Prisma wurde im Vorfeld kalibriert. Die Winkel zwischen den x- und z-Spiegeln werden mit Hilfe von zwei gegeneinander ausgerichteten Pentaprismen und einem Autokollimator kalibriert. Der Autokollimator ist über ein Pentaprisma entlang der Normalen des z-Spiegels ausgerichtet. Dieses Pentaprisma bewegt sich nur entlang der x-Richtung, bis er das zweite Pentaprisma trifft und richtet nun auch das zweite Pentaprisma so, dass der Winkel der x-Spiegelfläche mit dem AKF gemessen werden kann. Die Winkelabweichung zwischen den x- und z-Spiegeln der Raumspiegelecke ist der Differenzwert vom Messwert des Autokollimators und dem Winkelfehler beider Pentaprismen. Die Rechtwinkligkeitsabweichung zwischen den y-und z-Spiegeln wird in gleicher Weise kalibriert. Um systematische Fehler zu minimieren, ist es erforderlich, ein Kalibrierverfahren für Pentaprismen in vertikaler Ausrichtung mittels eines Fizeau-Interferometers umzusetzen. Der Drei-Pentaprismen-Test wird verwendet, um die absolute Winkelfehler der Pentaprismen in vertikaler Lage zu bestimmen. Die Genauigkeit für diese Methode wird auf 0,1" geschätzt und wird durch die Kalibrierungsunsicherheit der Pentaprismen bestimmt. Alle gemessenen Orthogonalitätsabweichungen werden abschließend quantifiziert und mit den Topographiedaten der Raumspiegelecke für Korrektur kombiniert.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2017000501
Kühndel, Jonas;
Thermohydraulische Untersuchungen an additiv gefertigten tiefengewellten Rippen für Kühlungsanwendungen. - Aachen : Shaker Verlag, 2018. - XIV, 151 Seiten. - (Schriftenreihe des MAHLE Doktorandenprogramms ; Band 6)
Technische Universität Ilmenau, Dissertation 2018

ISBN 3-8440-6287-4

Eine Steigerung der Effizienz von Wärmeübertragern birgt das Potenzial Energiebedarf, Material, Bauraum und Kosten zu reduzieren. Luftgekühlte Motorkühlungswärmeübertrager wie sie bei Bau- und Landmaschinen eingesetzt werden zeichnen sich durch ein Betriebsumfeld aus, das von Verschmutzungspartikeln wie Staub und Pflanzenmaterial geprägt ist. Sie müssen gegenüber Verunreinigungen resistent und mittels Druckluft zu reinigen sein. Deshalb werden auf ihrer Luftseite tiefengewellte Wellrippen eingesetzt. Die bestehenden Korrelationen zur Beschreibung des Wärmeübergangs und des Druckverlustes in Abhängigkeit der tiefengewellten Rippengeometrie genügen allerdings bisher nicht den Ansprüchen bei einer präzisen Auslegung von Wärmeübertragern. In der vorliegenden Arbeit wird die Entwicklung einer neuen Methodik vorgestellt, die die Designfreiheitsgrade des Selektiven Laserschmelzens (SLM) nutzt, um eine experimentelle Analyse des thermohydraulischen Verhaltens von praxisrelevanten Geometrieparametern wie Amplitude, Wellenlänge und Grundform bei tiefengewellten Wellrippen durchzuführen. Der Einfluss dieser Geometrieparameter auf Leistung und Druckverlust wird anhand experimenteller, thermodynamischer Leistungsmessungen analysiert. Im Zuge der Arbeit wird hierfür ein Prüfstand zur Untersuchung SLM-gefertigter Versuchselemente mit Wellrippenstrukturen entwickelt. Mit hoch genauen, reproduzierbaren Messungen werden anhand von und Darcy friction factor Wärmeübertragung und Druckverlust der Wellrippen analysiert. Dabei werden kleinskalierte Versuchselemente gefertigt und hinsichtlich Maßhaltigkeit, Porosität und Oberflächenrauigkeit untersucht. Es wird der Effekt der erhöhten Oberflächenrauigkeiten des SLM experimentell und mit numerischen Simulationen behandelt. Die maßhaltige Realisierung der Geometrieparametervariationen in feinen Schritten bildet eine engmaschige Versuchsmatrix für den relevanten Parameterbereich der Wellenausprägungen verschiedener tiefengewellter Grundformen. Die bei konventioneller Rippenfertigung auftretenden Effekte, wie der des Anstellwinkels sowie der Wellenmodulation werden untersucht. Auf Basis der Messdaten können neue, präzisere empirische Korrelationen entwickelt werden, welche zuverlässig und präzise das Verhalten von tiefengewellten Wellrippen modellieren. Somit kann eine optimale Auslegung von Wärmeübertragern erfolgen.



Sen, Seema;
Development of PVD-coated and nanostructured reactive multilayer films. - Ilmenau : Universitätsverlag Ilmenau, 2018. - 1 Online-Ressource (XVII, 166 Seiten). - (Werkstofftechnik aktuell ; Band 19)
Technische Universität Ilmenau, Dissertation 2018

Als eine neue Klasse von energetischen Materialien speichern die reaktiven Multilagensysteme die chemische Energie. Sie setzen eine große Menge der Energie durch eine schnelle Reaktionspropagation nach einer Aktivierung in der Form von Wärme frei. Im Zusammenhang mit dem zunehmenden Potenzial in den hochmodernen Fügetechnologien und den anderen Industrieanwendungen finden solche Typen von reaktiven Mehrschichtensystemen große Aufmerksamkeit. Das hohe Interesse konzentriert sich auf die Anwendung der sehr schnellen und lokalisierten Energie Freisetzung. Die Kenntnisse über die Materialkombinationen und Morphologie spielt eine wichtige Rolle, um reaktive Mehrschichtensysteme mit entsprechenden Reaktionseigenschaften und Wärmemenge herzustellen. Im Mittelpunkt dieser Arbeit stehen daher die Entwicklung der Schichtweise abgeschiedenen reaktiven Multilagenschichten und die Charakterisierung der Reaktionseigenschaften. Die eingestellten Bereiche können wie folgt zusammengefasst werden; - Die reaktiven Multilagenschichten von binären Ti-Al, Zr-Al und ternären Ti-Al-Si Kombinationen wurden mittels Magnetronsputtern-Deposition produziert, die zu der niedrigen Medium oder hohen Energieklasse gehören. - Die selbstverbreitenden Reaktionseigenschaften wurden in Bezug auf Wärme, Temperatur, Reaktionsgeschwindigkeit und Propagationsweisen charakterisiert. - Herstellung der großflächigen freistehenden reaktiven Folien wurde aufgezeigt. Für die Bestimmung der Reaktionswärme wurde die Standardbildungsenthalpie zu Beginn der Arbeit durch thermodynamische Simulationen mit Thermo-Calc 3.1 berechnet. Die Menge der Reaktionswärme hängt von der chemischen Zusammensetzung des Ti-Al-, Zr-Al- und Ti-Si Systems ab. Dann wurden Ti/Al, Zr/Al und Ti/Si/Ti/nAl Multilagenschichten für unterschiedliche Periodendicken, Molverhältnisse und Multischichtaufbau abgeschieden. Die Ti/nAl (n = 1-3) reaktiven Multilagenschichten wurden mit verschiedenen Al-Molverhältnissen hergestellt. Die Reaktionsgeschwindigkeit änderte sich zwischen (0.68±0.4) m/s und (2.57±0.6) m/s. Die Reaktionstemperatur änderte sich im Bereich 1215-1298 ˚C. Die 1Ti/3Al Schicht zeigt auch eine instationäre Reaktionspropagation mit der Kräuselungsbandbildung. Außerdem wurden der Temperaturfluss und die chemische Vermischung in nanoskalige Schichten von 1Ti/1Al Zusammensetzung (für 20 nm Periodendicke) erstmals mittels Strömung Simulation berechnet. Die Ergebnisse zeigten, dass der Temperaturfluss viel schneller als das chemische Mischen während der fortschreitenden Reaktion ist. Die 1Zr/1Al Schichten wurden mit der verschiedenen Periodendicken von 20 nm bis 55 nm untersucht. Die Reaktionsgeschwindigkeit und Reaktionstemperatur änderten sich im Bereich 0.23-1.22 m/s und 1581-1707 ˚C. Hier wurde auch die Oxidationsreaktion während der fortschreitenden Reaktion aufgezeigt. Zum ersten Mal wurden ternäre Multilagenschichten von Ti, Si und Al-Reaktanten für verschiedene Schichtenanordnung (Si/Ti/Al/Si und Ti/Si/Ti/nAl, n = 1-3) abgeschieden. Hier, Reaktionseigenschaften hängten von Schichtenanordnung und Al-Molverhältnissen ab. Für den Ti/Si/Ti/Al Schicht konnte eine maximale Reaktionspropagation von (9.2±2) m/s und eine Reaktionstemperatur von (1807±30) ˚C bestimmt werden. Danach wurden die vorgenannten ternären Folien erstmals in einem reaktiven Fügeprozess eingesetzt. Für die Herstellung großflächiger freistehenden RMS, würde der Einfluss der Substratwerkstoffe in Hinblick auf der Ablöseverhalten nach der Beschichtung untersucht. Die Verwendung des Kupfersubstrats zeigt eine einfache und schnelle Weise, freistehende Folie zu produzieren. Diese Methode ermöglicht die Produktion von freistehenden 1Zr/1Al und 1Ti/1Si/1Ti/Al Folien mit der großen Fläche von 11 cm × 2 cm × 45 [my]m und 8 cm × 4 cm × 52 [my]m. Außerdem zeigt diese Arbeit einen verbesserten Herstellungsprozess mit der Skalierbarkeit und homogenen Mikrostrukturen von Multilagenschichten. Die Untersuchungen in dieser Arbeit zeigen, dass die Zusammensetzung und Morphologie die Reaktionseigenschaften unmittelbar beeinflussen und bieten potenzielle Möglichkeiten als eine kontrollierbare Wärmequelle auf der Basis Ti/Al-, Zr/Al- und Ti/Si/Al RMS zur Verfügung stellen. Andererseits schließt die Reaktion die Effekte der Oxidation und instationären Reaktionspropagation ein, die dabei hilfreich wären, die Reaktionskinetik zu verstehen. Die Ergebnisse in dieser Arbeit können als ein Beitrag zu einem Modell um ideale RMS in Bezug auf Reaktionseigenschaften zu entwickeln.



https://www.db-thueringen.de/receive/dbt_mods_00035336
Thomisch, Marco;
Methodik zur Bestimmung optimaler Parameter beim Drahtumformen. - Ilmenau : Universitätsverlag Ilmenau, 2018. - 1 Online-Ressource (XIX, 202 Seiten). - (Berichte aus dem Institut für Maschinen- und Gerätekonstruktion (IMGK) ; Band 31)
Technische Universität Ilmenau, Dissertation 2018

Mehrstufige Drahtumformprozesse stellen die fertigungstechnische Grundlage für technisch anspruchsvolle Bauteile dar. Bei diesen mehrstufigen Prozessen ist die Ermittlung der resultierenden Eigenspannungen sowohl analytisch als auch numerisch bisher nur bedingt möglich. Zielsetzung der vorliegenden Arbeit ist die Bereitstellung einer Methodik zur Bestimmung der optimalen Parameter beim Drahtumformen. Als erstes wird die zur Beschreibung des Umformvorgangs nötige Werkstoffcharakterisierung durchgeführt. Diese Charakterisierung basiert auf Experimenten, die sowohl den BAUSCHINGER-Effekt als auch Ver- und Entfestigungsmechanismen untersuchen und quantifizieren. Darauf aufbauend folgt der zweite Teilbereich, die analytische Beschreibung des mehrstufigen Umformprozesses. Durch Anwendung dieses deskriptiven Algorithmus werden sowohl die (Eigen-)Spannungen als auch die elastischen und plastischen Verformungen zu jedem Zeitpunkt des Umformvorgangs bestimmt. Als dritter Teilbereich werden verschiedene Optimierungsalgorithmen mit unterschiedlichen Zielsetzungen für den deskriptiven Algorithmus vorgestellt.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2018000300