Konferenzbeiträge ab 2018

Anzahl der Treffer: 1328
Erstellt: Fri, 03 May 2024 23:19:08 +0200 in 0.0818 sec


Darnieder, Maximilian; Fröhlich, Thomas; Theska, René
Tilt sensitivity modeling of a monolithic weighing cell structure. - In: Interdisciplinary applications of kinematics, (2019), S. 257-264

Chavez, Jhohan; Scharff, Moritz; Helbig, Thomas; Alencastre, Jorge H.; Böhm, Valter; Behn, Carsten
Analysis of the dynamic behavior of beams supported by a visco-elastic foundation in context to natural vibrissa. - In: Interdisciplinary applications of kinematics, (2019), S. 51-59

Gräser, Philipp; Linß, Sebastian; Zentner, Lena; Theska, René
Optimization of compliant mechanisms by use of different polynomial flexure hinge contours. - In: Interdisciplinary applications of kinematics, (2019), S. 265-274

This paper presents the application of different polynomial flexure hinge contours in one compliant mechanism in order to increase both simultaneously the precision and the stroke of the output motion of compliant mechanisms. The contours of the flexure hinges are optimized in dependency of the required elasto-kinematic properties of the mechanism. This new approach for optimization is described in comparison to the use of identical common hinge contours. Based on previously optimized single polynomial flexure hinges, the validity of proposed guidelines is analyzed for a combination of several flexure hinges in two compliant mechanisms for linear point guidance. The rigid-body models of both mechanisms realize an approximated straight line as output motion. The compliant mechanisms are designed through the rigid-body replacement method and with different polynomial flexure hinges with orders varying from 2 to 16. The multi-criteria optimization is performed by use of non-linear FEM simulations. The derived values for the kinematic output parameters are compared for the ideal model and the optimized compliant mechanism. The results are discussed and conclusions for ongoing research work are drawn.



Theska, René; Zentner, Lena; Fröhlich, Thomas; Weber, Christian; Manske, Eberhard; Linß, Sebastian; Gräser, Philipp; Harfensteller, Felix; Darnieder, Maximilian; Kühnel, Michael
Compliant mechanisms for ultra-precise applications. - In: Interdisciplinary applications of kinematics, (2019), S. 249-256

This paper reports about enhanced compliant mechanisms with flexure hinge based on new analytic and/or FEM models that have been manufactured by state of the art wire EDM technology. Experimental proofs at test benches, equipped with ultra-precise interferometer based length and angular measurement systems, show first time the residual deviation to the intended path of motion with a resolution of nanometers/arc seconds. Theoretically determined and measured data are in good correlation. Repeatability limitations are rather more given by the residual noise of the overall test arrangement and mainly not by the mechanism itself.



Dölker, Eva-Maria; Petkoviâc, Bojana; Schmidt, Reinhard; Ziolkowski, Marek; Brauer, Hartmut; Haueisen, Jens
Single voxel approach for Lorentz force evaluation. - In: Compel, ISSN 2054-5606, Bd. 38 (2019), 3, S. 943-952

https://doi.org/10.1108/COMPEL-09-2018-0354
Eichardt, Roland; Strohmeier, Daniel; Hunold, Alexander; Machts, René; Haueisen, Jens; Oelsner, Gregor; Schmidt, Christian B.; Schultze, Volkmar; Stolz, Ronny; Graichen, Uwe
Sensitivity studies and optimization of arrangements of optically pumped magnetometers in simulated magnetoencephalography. - In: Compel, ISSN 2054-5606, Bd. 38 (2019), 3, S. 953-964

https://doi.org/10.1108/COMPEL-09-2018-0372
Manske, Eberhard; Fröhlich, Thomas; Füßl, Roland; Mastylo, Rostyslav; Blumröder, Ulrike; Köchert, Paul; Birli, Oliver; Ortlepp, Ingo; Pruß, Christof; Schwesinger, Folker; Meister, Andreas
Scale spanning subnanometer metrology up to ten decades. - In: Optical Measurement Systems for Industrial Inspection XI, (2019), S. 110560L-1-110560L-7

Nanometre accuracy and resolution metrology over large areas is becoming more and more a necessity for the progress of precision and especially for nano manufacturing. In recent years, the TU Ilmenau has succeeded in developing the scientific-technical basics of new ultra-high precision, so called nanopositioning and nanomeasuring machines. In further development of the first 25 mm machine, known as NMM-1 from SIOS Meßtechnik GmbH, we have developed and built new machines having measuring ranges of 200 mm x 200 mm x 25 mm at a resolution of 20 pm and enable measuring reproducibility of up to 80 pm. This means a relative resolution of 10 decades. The enormous accuracy is only made possible by the consistent application of error-minimum measurement principles, highly accurate interferometric measurement technology in combination with highly developed measurement signal processing and comprehensive error correction algorithms. The probing of the measurement objects can optionally be carried out with the aid of precision optical, interference-optical, tactile or atomic force sensors. A complex 3D measurement uncertainty model is used for error analysis. The high performance could be demonstrated as an example in step height measurements with a reproducibility of only 73 pm. The achieved resolution of 10-10 also presents new challenges for the frequency stability of the He-Ne lasers used. Here, the approach of direct coupling of the lasers to a phase-stabilized optical frequency comb synchronized with an atomic clock is pursued. The frequency stability is thus limited by the relative stability of the RFreference to better than 4×10-12 (1s).



https://doi.org/10.1117/12.2526076
Belkner, Johannes; Liu, Hsiu-Wen; Manske, Eberhard; Chen, Liang-Chia
Novel chromatic confocal differential interference contrast prototype. - In: Optical Measurement Systems for Industrial Inspection XI, (2019), S. 1105611-1-1105611-9

By combining classic differential interference contrast (DIC) with the chromatic confocal principle, we show that phaseshifting calibration can be avoided in DIC by using spectral information induced by the investigated sample. The created spectral fringe can be further used to unwrap the phase. This unwrapping is limited by the spectral resolution of the spectrometer. Therefore, the depth-difference around a single measurement point can be determined instantaneously. To reconstruct the depth profile, the integration of a depth-gradient is necessary. By combining the depth information of the chromatic confocal carrier signal with the differential depth information of the carried DIC signal, the accumulation of measurement uncertainty can be reduced. To our best knowledge, the proposed chromatic confocal differential interference contrast (CCDIC) is a novel profile reconstruction principle. To verify the feasibility of the CCDIC, a prototype probe with an adjustable shear and phase has been developed. Preliminary experiments achieve sub-micrometer depth resolution. A current challenge requiring further work is the stable unwrapping of the phase-difference by spectral frequencies. Keywords: chromatic confocal, differential interference contrast, unwrapping, industrial metrology



https://doi.org/10.1117/12.2527854
Dittrich, Paul-Gerald; Bichra, Mohamed; Stiehler, Daniel; Pfützenreuter, Christian; Radtke, Lisa; Rosenberger, Maik; Notni, Gunther
Extended characterization of multispectral resolving filter-on-chip snapshot-mosaic CMOS cameras. - In: Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV, (2019), S. 109860I-1-109860I-11

https://doi.org/10.1117/12.2518842
Bischoff, Jörg; Mastylo, Rostyslav; Granet, Gerard; Manske, Eberhard
Model based laser focus scanning - the path towards improved lateral accuracy. - In: Modeling Aspects in Optical Metrology VII, (2019), S. 110570F-1-110570F-12

In principal, optical measurement methods suffer from physical limits related to finite wavelengths and diffraction. In laser focus scanning, vertical resolutions below 1 nm can be achieved while the lateral accuracy is more or less restricted by the diameter of the focused laser beam, i.e. values of half the wavelength can be reached in the best case. We present a model based approach having the potential to show a way out of this limitation. It is based on the rigorous modeling of the complete measurement device including sophisticated ray tracing in combination with Maxwell based modeling of the sample diffraction and scattering providing a simulated signal for an assumed sample profile. Furthermore, the sample profile is parametrized on the basis of a priori information. The simulated signal is then iteratively compared with the measured signal while updating the floating parameters of the model in order to improve the match between the two signals. Eventually, the improved sample profile obtained in this way is considered to represent the real sample profile as soon as a certain goodness of fit is achieved. On the other hand, the profile model has to be changed in case there is no satisfying fit. In this way, the lateral accuracy can be increased considerably. Edge detection errors below a few tens nanometer or even below 10 nm become possible while measuring with visible light. This is demonstrated by first comparisons of modeled and measured signals and validation by alternative metrology techniques.



https://doi.org/10.1117/12.2525319