Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1634
Erstellt: Sun, 28 Apr 2024 20:33:28 +0200 in 0.0646 sec


Mohammadkarimi, Shiva; Neitzel, Benedikt; Lang, Maximilian; Puch, Florian
Investigation of the fiber length and the mechanical properties of waste recycled from continuous glass fiber-reinforced polypropylene. - In: Recycling, ISSN 2313-4321, Bd. 8 (2023), 6, 82, S. 1-20

This paper explores the mechanical recycling of continuous fiber-reinforced thermoplastics (CFRTPs) waste into injection molded products, focusing on the influence of recycling parameters on fiber length and mechanical properties. CFRTPs are gaining attention for their promising attributes, including weight-specific mechanical properties, short cycle times, storability, and recyclability, making them suitable for diverse applications. However, as CFRTP production rates rise, recycling strategies become crucial for sustainability. This study investigates the processability of CFRTP waste, defines size reduction conditions, and evaluates the impact of various compounding parameters such as temperature, screw speed, and fiber volume content during extrusion. The research findings indicate that higher screw speeds lead to fiber length reduction, whereas elevated temperatures result in longer fibers. Increased fiber volume intensifies interactions, resulting in shorter lengths. Additionally, the study examines the influence of injection molding parameters such as back pressure, screw speed, and initial fiber length on the resulting fiber length and mechanical properties of injection molded specimens, emphasizing the need for precise parameter control to optimize performance in recycled CFRTPs. Key findings are that increasing the initial fiber length from 260 μm to 455 μm results in an average fiber length after injection molding of 225 μm and 341 μm, respectively. This implies that longer initial fibers are more prone to breakage. Regarding the mechanical properties, increasing back pressure from 20 bar to 60 bar results in a reduction in Young’s modulus of approximately 40 MPa. Higher screw speed also reduces modulus by approximately 70 MPa due to intensified fiber-screw interactions. However, back pressure and screw speed have neutral effects on the tensile strength and the elongation at break.



https://doi.org/10.3390/recycling8060082
Brätz, Oliver; Arnim, Mareike; Eichler, Stefan; Gericke, Andreas; Hildebrand, Jörg; Bergmann, Jean Pierre; Kuhlmann, Ulrike; Henkel, Knuth-Michael
Mechanical properties of MAG butt welded dissimilar structural steel joints with varying strength from grade S355 up to S960. - In: Welding in the world, ISSN 1878-6669, Bd. 67 (2023), 12, S. 2791-2802

Mixed connections made of normal-strength and high-strength structural steels allow for optimized material usage and production effort in applications where, as a result of different mechanical effects on materials of the same type, it would otherwise be necessary to adjust the plate thickness. Reduced material consumption and smaller weld geometries can thus generate ecological and economic advantages. When welding high-strength structural steels, however, significant softening can occur in the heat-affected zone, which can influence the load-carrying behavior of the overall joint. Since there are currently no appropriate standards for butt welds made of steels with different strengths up to S960, a separate design concept is required. In this paper, the weldability and load-carrying capacity of multilayer MAG welded butt joints designed as mixed connections of a normal-strength structural steel S355 and a high-strength structural steel in the range S690 to S960 are investigated. Extensive experimental investigations are carried out, in which other influencing variables such as the filler metal used, the heat input, the plate thickness, and the weld geometry are varied in order to identify their effects on the load-carrying capacity of the welded joints. Among other things, the results form the basis for an empirically based design model for mixed connections.



https://doi.org/10.1007/s40194-023-01600-9
Wieboldt, Rieke; Lindt, Kevin; Pohlmeier, Andreas; Mattea, Carlos; Stapf, Siegfried; Haber-Pohlmeier, Sabina
Effects of salt precipitation in the topmost soil layer investigated by NMR. - In: Applied magnetic resonance, ISSN 1613-7507, Bd. 54 (2023), 11/12, S. 1607-1631

The drying of highly concentrated aqueous salt solutions in sand and soil has been investigated by one-dimensional spatially resolved low-field relaxation measurements of 1H nuclei in water as well as high-field MRI of 1H and 23Na nuclei of water and sodium ions. Water evaporates until the solutions in the solid matrix reach saturation conditions, when salt begins to crystallize. Depending on salt type and conditions, such as actual soil water content and air humidity, this crystallization can occur above (efflorescent) or below (subflorescent) the soil surface. Both effects occur in nature and affect the evaporation behavior of water. The formation of salt precipitate domains is demonstrated by MRI, where the precipitate domains remain penetrable to water. Complete drying is achieved in the top 2 mm of soil with the exception of strongly hygroscopic perchlorates which maintain a constant amount of liquid water under ambient laboratory conditions and dry air. This situation is considered similar to the co-existence of perchlorates and water in strongly eutectic mixtures on Mars.



https://doi.org/10.1007/s00723-023-01568-1
Gabash, Aouss;
Review of battery storage and power electronic systems in flexible A-R-OPF frameworks. - In: Electronics, ISSN 2079-9292, Bd. 12 (2023), 14, 3127, S. 1-15

This paper provides an overview of power electronics and its applications in various fields, emphasizing power conditioning and minimizing losses for high energy efficiency. It discusses the distinction between unidirectional and bidirectional converters and their applications in power systems. The significance of unidirectional and bidirectional power flow in different scenarios is explored. The importance of battery storage systems (BSSs) for grid stabilization, frequency regulation, and renewable energy integration is highlighted. The paper focuses on flexible active-reactive optimal power flow (A-R-OPF) frameworks in battery storage and power electronic systems, reviewing existing research, identifying gaps, and offering new perspectives. It addresses the challenges and potential of grid-scale energy storage for reliable and cost-effective power systems with high renewable energy penetration. The need for energy curtailment, demand response, and smart grid implementation is discussed. The paper emphasizes comprehensive coordination, new power lines, European collaboration, and smart grid implementation to meet the dynamic needs of Europe’s power grids.



https://doi.org/10.3390/electronics12143127
Köhler, Tobias; Song, Buchao; Bergmann, Jean Pierre; Peters, Diana
Geometric feature extraction in manufacturing based on a knowledge graph. - In: Heliyon, ISSN 2405-8440, Bd. 9 (2023), 9, e19694, S. 1-15

In times of global crises, the resilience of production chains is becoming increasingly important. If a supply chain is interrupted, a cost-effective solution must be established quickly. In the context of Industry 4.0, the concept of smart manufacturing offers a solution for fast and automated decision-making in production planning. The core idea of smart manufacturing is the digitalization of the product life cycle and the linking of individual phases of this cycle. Computer Aided Process Planning (CAPP) plays an important role as the connecting element between design and manufacturing. An important prerequisite for CAPP is the automated analysis of 3D models of components. The aim of this work is the development of an automatic feature recognition (AFR) -method to recognize geometric manufacturing features and their properties from 3D-models and then store them in a knowledge base. In that way, the result of the design can be automatically analysed and compared with manufacturing information afterwards in order to achieve an automated process planning. Geometric and topological information of a 3D model (STEP-AP242 format) generated by CAD systems is extracted by a Python-script developed and stored in an ontology-based knowledge base. The extracted product data is analysed using a Python-script to identify manufacturing features. To provide a comprehensive extensibility of the model, geometric features are defined according to a layered and hierarchical structure.



https://doi.org/10.1016/j.heliyon.2023.e19694
Motuziuk, Olexandr; Nozdrenko, Dmytro; Prylutska, Svitlana; Vareniuk, Igor; Bogutska, Kateryna; Braniuk, Serhii; Korotkyi, Olexandr; Prylutskyy, Yuriy; Ritter, Uwe; Piosik, Jacek
The effect of C60 fullerene on the mechanokinetics of muscle gastrocnemius contraction in chronically alcoholized rats. - In: Heliyon, ISSN 2405-8440, Bd. 9 (2023), 8, e18745, S. 1-10

The C60 fullerene effect (oral administration at a dose of 1 mg kg−1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.



https://doi.org/10.1016/j.heliyon.2023.e18745
Wang, Zhongwu; Ma, Yining; Guo, Shujing; Yuan, Liqian; Hu, Yongxu; Huang, Yinan; Chen, Xiaosong; Ji, Deyang; Bi, Jinshun; Lei, Yong; Han, Cheng; Li, Liqiang; Hu, Wenping
Suppressing the intrinsic photoelectric response of organic semiconductors for highly-photostable organic transistors. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 50, 2304634, S. 1-8

Suppressing the photoelectric response of organic semiconductors (OSs) is of great significance for improving the operational stability of organic field-effect transistors (OFETs) in light environments, but it is quite challenging because of the great difficulty in precisely modulating exciton dynamics. In this work, photostable OFETs are demonstrated by designing the micro-structure of OSs and introducing an electrical double layer at the OS/polyelectrolyte dielectric interface, in which multiple exciton dynamic processes can be modulated. The generation and dissociation of excitons are depressed due to the small light-absorption area of the microstripe structure and the excellent crystallinity of OSs. At the same time, a highly efficient exciton quenching process is activated by the electrical double layer at the OS/polyelectrolyte dielectric interface. As a result, the OFETs show outstanding tolerance to the light irradiation of up to 306 mW&hahog;cm−2, which far surpasses the solar irradiance value in the atmosphere (≈138 mW&hahog;cm−2) and achieves the highest photostability ever reported in the literature. The findings promise a general and practicable strategy for the realization of photostable OFETs and organic circuits.



https://doi.org/10.1002/smll.202304634
Iszak, Krisztián; Gronemann, Simon Mathies; Meyer, Stefanie; Hunold, Alexander; Zschüntzsch, Jana; Bähr, Mathias; Paulus, Walter; Antal, Andrea
Why temporal inference stimulation may fail in the human brain: a pilot research study. - In: Biomedicines, ISSN 2227-9059, Bd. 11 (2023), 7, 1813, S. 1-25

Temporal interference stimulation (TIS) aims at targeting deep brain areas during transcranial electrical alternating current stimulation (tACS) by generating interference fields at depth. Although its modulatory effects have been demonstrated in animal and human models and stimulation studies, direct experimental evidence is lacking for its utility in humans (in vivo). Herein, we directly test and compare three different structures: firstly, we perform peripheral nerve and muscle stimulation quantifying muscle twitches as readout, secondly, we stimulate peri-orbitally with phosphene perception as a surrogate marker, and thirdly, we attempt to modulate the mean power of alpha oscillations in the occipital area as measured with electroencephalography (EEG). We found strong evidence for stimulation efficacy on the modulated frequency in the PNS, but we found no evidence for its utility in the CNS. Possible reasons for failing to activate CNS targets could be comparatively higher activation thresholds here or inhibitory stimulation components to the carrier frequency interfering with the effects of the modulated signal.



https://doi.org/10.3390/biomedicines11071813
Schier, Peter; Jaufenthaler, Aaron; Liebl, Maik; Arsalani, Soudabeh; Wiekhorst, Frank; Baumgarten, Daniel
Human-sized quantitative imaging of magnetic nanoparticles with nonlinear magnetorelaxometry. - In: Physics in medicine and biology, ISSN 1361-6560, Bd. 68 (2023), 15, 155002, S. 1-10

Objective. Magnetorelaxomety imaging (MRXI) is a noninvasive imaging technique for quantitative detection of magnetic nanoparticles (MNPs). The qualitative and quantitative knowledge of the MNP distribution inside the body is a prerequisite for a number of arising biomedical applications, such as magnetic drug targeting and magnetic hyperthermia therapy. It was shown throughout numerous studies that MRXI is able to successfully localize and quantify MNP ensembles in volumes up to the size of a human head. However, deeper regions that lie far from the excitation coils and the magnetic sensors are harder to reconstruct due to the weaker signals from the MNPs in these areas. On the one hand, stronger magnetic fields need to be applied to produce measurable signals from such MNP distributions to further upscale MRXI, on the other hand, this invalidates the assumption of a linear relation between applied magnetic field and particle magnetization in the current MRXI forward model which is required for the imaging procedure. Approach. We tackle this problem by introducing a nonlinear MRXI forward model that is also valid for strong magnetic excitation fields. Main results. We demonstrate in our experimental feasibility study that scaling up the imaging region to the size of a human torso using nonlinear MRXI is possible. Despite the extreme simplicity of the imaging setup applied in this study, an immobilized MNP sample with 6.3 cm3 and 12 mg Fe could be localized and quantified with an acceptable quality. Significance. A well-engineered MRXI setup could provide much better imaging qualities in shorter data acquisition times, making nonlinear MRXI a viable option for the supervision of MNP related therapies in all regions of the human body, specifically magnetic hyperthermia.



https://doi.org/10.1088/1361-6560/ace304
Zavodovskiy, Danylo O.; Bulgakova, Nataliya V.; Sokolowska, Inna; Prylutskyy, Yuriy I.; Ritter, Uwe; Gonchar, Olga O.; Kostyukov, Alexander I.; Vlasenko, Oleh V.; Butowska, Kamila; Borowik, Agnieszka; Piosik, Jacek; Maznychenko, Andriy
Water-soluble pristine C60 fullerenes attenuate isometric muscle force reduction in a rat acute inflammatory pain model. - In: BMC musculoskeletal disorders, ISSN 1471-2474, Bd. 24 (2023), 606, S. 1-8

Background: Being a scavenger of free radicals, C60 fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C60 fullerene aqueous solution (C60FAS) on the muscle contractile properties under acute inflammatory pain. Methods: To induce inflammation a 2.5% formalin solution was injected into the rat triceps surae (TS) muscle. High-frequency electrical stimulation has been used to induce tetanic muscle contraction. A linear motor under servo-control with embedded semi-conductor strain gauge resistors was used to measure the muscle tension. Results: In response to formalin administration, the strength of TS muscle contractions in untreated animals was recorded at 23% of control values, whereas the muscle tension in the C60FAS-treated rats reached 48%. Thus, the treated muscle could generate 2-fold more muscle strength than the muscle in untreated rats. Conclusions: The attenuation of muscle contraction force reduction caused by preliminary injection of C60FAS is presumably associated with a decrease in the concentration of free radicals in the inflamed muscle tissue, which leads to a decrease in the intensity of nociceptive information transmission from the inflamed muscle to the CNS and thereby promotes the improvement of the functional state of the skeletal muscle.



https://doi.org/10.1186/s12891-023-06719-w