Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1634
Erstellt: Sun, 28 Apr 2024 20:33:28 +0200 in 0.0692 sec


Mathew, Sobin; Reiprich, Johannes; Narasimha, Shilpashree; Abedin, Saadman; Kurtash, Vladislav; Thiele, Sebastian; Scheler, Theresa; Hähnlein, Bernd; Schaaf, Peter; Jacobs, Heiko O.; Pezoldt, Jörg
Gate-tunable hysteresis response of field effect transistor based on sulfurized Mo. - In: AIP Advances, ISSN 2158-3226, Bd. 13 (2023), 9, 095224, S. 095224-1-095224-7

Hysteresis effects and their tuning with electric fields and light were studied in thin film molybdenum disulfide transistors fabricated from sulfurized molybdenum films. The influence of the back-gate voltage bias, voltage sweep range, illumination, and AlOx encapsulation on the hysteresis effect of the back-gated field effect transistors was studied and quantified. This study revealed the distinctive contribution of MoS2 surface, MoS2/SiO2 interface defects and their associated traps as primary sources of of hysteresis.



https://doi.org/10.1063/5.0165868
Kodera, Sayako; Schmidt, Leander; Römer, Florian; Schricker, Klaus; Gourishetti, Saichand; Böttger, David; Krüger, Tanja; Kátai, András; Straß, Benjamin; Wolter, Bernd; Bergmann, Jean Pierre
Temporal resolution of acoustic process emissions for monitoring joint gap formation in laser beam butt welding. - In: Applied Sciences, ISSN 2076-3417, Bd. 13 (2023), 18, 10548, S. 1-17

With the increasing power and speed of laser welding, in-process monitoring has become even more crucial to ensure process stability and weld quality. Due to its low cost and installation flexibility, acoustic process monitoring is a promising method and has demonstrated its effectiveness. Although its feasibility has been the focus of existing studies, the temporal resolution of acoustic emissions (AE) has not yet been addressed despite its utmost importance for realizing real-time systems. Aiming to provide a benchmark for further development, this study investigates the relationship between duration and informativeness of AE signals during high-power (3.5 kW) and high-speed (12 m/min) laser beam butt welding. Specifically, the informativeness of AE signals is evaluated based on the accuracy of detecting and quantifying joint gaps for various time windows of signals, yielding numerical comparison. The obtained results show that signals can be shortened up to a certain point without sacrificing their informativeness, encouraging the optimization of the signal duration. Our results also suggest that large gaps (>0.3 mm) induce unique signal characteristics in AE, which are clearly identifiable from 1 ms signal segments, equivalent to 0.2 mm weld seam.



https://doi.org/10.3390/app131810548
Hou, Minjie; Zhou, Yingjie; Liang, Feng; Zhao, Huaping; Ji, Deyang; Zhang, Da; Li, Liqiang; Lei, Yong
Research progress of solid electrolyte interphase for sodium metal anodes. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 475 (2023), 146227

Inhomogeneous and fragile solid electrolyte interphase (SEI) leads to poor battery cycle life and safety hazards, which is a key challenge that limits the practical application of low-cost sodium metal anodes. Although sodium metal batteries based on non-aqueous liquid and solid electrolytes have made great progress in terms of interfacial chemistry and SEI regulation strategies, the relevant evaluation of SEI from the perspective of the electrolyte is not well understood. This paper reviews the formation mechanism, physicochemical properties, and failure mechanism of SEI at the interface between the sodium metal and the liquid/solid electrolyte, focusing on poor stability, compatibility, interfacial ion transport problems, and influencing factors. Recent advances in SEI regulation are summarized in terms of electrolytes, artificial interphases, and electrode engineering to achieve ideal electrochemical reversibility. The effectiveness of the SEI engineering strategies was evaluated based on a comprehensive review of the interfacial stability in different electrolyte systems. Finally, the challenges associated with rational interface design for long-lasting sodium metal batteries are discussed, along with promising avenues for the same.



https://doi.org/10.1016/j.cej.2023.146227
Hou, Shengping; Xie, Zhipeng; Zhang, Da; Yang, Bin; Lei, Yong; Liang, Feng
High-purity graphene and carbon nanohorns prepared by base-acid treated waste tires carbon via direct current arc plasma. - In: Environmental research, ISSN 1096-0953, Volume 238 (2023), part 1, 117071

As the accumulation of waste tires continues to rise year by year, effectively managing and recycling these discarded materials has become an urgent global challenge. Among various potential solutions, pyrolysis stands out due to its superior environmental compatibility and remarkable efficiency in transforming waste tires into valuable products. Thus, it is considered the most potential method for disposing these tires. In this work, waste tire powder is pyrolyzed at 560 ˚C to yield pyrolysis carbon black, and meanwhile, the purification effects of base-acid solutions on pyrolysis carbon black are discussed. High-purity few-layer graphene flakes and carbon nanohorns are synthesized by a direct current arc plasma with H2 and N2 as buffer gases and high-purity pyrolysis carbon black as raw material. Under an H2 atmosphere, hydrogen effectively terminates the suspended carbon bonds, preventing the formation of closed structures and facilitating the expansion of graphene sheets. During the preparation of carbon nanohorns, the nitrogen atoms rapidly bond with carbon atoms, forming essential C-N bonds. This nitrogen doping promotes the formation of carbon-based five-membered and seven-membered rings and makes the graphite lamellar change in the direction of towards negative curvature. Consequently, such change facilitates the formation of conical structures, ultimately yielding the coveted carbon nanohorns. This work not only provides an economical raw material for efficient large-scale synthesis of few-layer graphene and carbon nanohorns but also broadens the intrinsic worth of pyrolysis carbon black, which is beneficial to improving the recycling value of waste tires.



https://doi.org/10.1016/j.envres.2023.117071
Gabash, Aouss;
Energy market transition and climate change: a review of TSOs-DSOs C+++ framework from 1800 to present. - In: Energies, ISSN 1996-1073, Bd. 16 (2023), 17, 6139, S. 1-24

In response to the pressing global challenges around climate change and the imperative of transitioning the energy market towards sustainability, this paper presents a comprehensive review starting from the late 18th century. The study examines the pivotal role of Transmission System Operators (TSOs) and Distribution System Operators (DSOs) in shaping the evolving energy landscape, with a specific emphasis on the C+++ Framework. This framework emphasizes coordination, cooperation, and collaboration between TSOs and DSOs to achieve sustainable energy systems through the integration of renewable energy technologies, storage systems, and efficient energy demand management. In addition, the review provides a historical overview of global warming from 1800 to the present, highlighting key events and developments related to greenhouse gas emissions. Furthermore, the paper delves into the significance of international agreements such as the Paris Agreement and the importance of reducing greenhouse gas emissions for a sustainable future. Recognizing the vital role of the C+++ Framework, the paper concludes with a discussion of future hybrid sustainable technologies incorporating various storage and efficient lighting technologies that can optimize energy management and reduce carbon emissions. This research aims to contribute valuable insights to inform energy policy and decision-making processes for a reliable, efficient, and sustainable energy delivery system.



https://doi.org/10.3390/en16176139
Liang, Weixiang; Chen, Jinyu; Jiang, Juncheng; Schalles, Marc; Marin, Sebastian; Augustin, Silke; Fröhlich, Thomas; Ding, Jiong
In-situ calibration method for thermocouples in accelerating rate calorimeter based on multiple fixed-points and Joule heat. - In: Thermochimica acta, Bd. 726 (2023), 179559, S. 1-11

To solve the problem of temperature drift of thermocouples in accelerating rate calorimeter caused by long-term operation, an in-situ calibration method based on multiple fixed-points and Joule heat is proposed in this article. Firstly, the heat transfer model of the calorimeter is established, and the validity of the method is verified by numerical simulation. Secondly, a multiple fixed-points graphite calibrator and a cylindrical electronic resistance element are designed. Finally, the in-situ calibration is carried out. The calibration results show that the maximum permissible measurement error of the sample thermocouple after calibration is better than 0.220 ˚C and that the bias of consistency in-situ calibration method is smaller than 0.110 ˚C. In addition, a di-tert-butyl peroxide in toluene solution with a mass percent of 20% is selected as the experimental sample. The sample experiment results show that the kinetic and thermodynamic parameters are closer to the reference values after thermocouples calibration.



https://doi.org/10.1016/j.tca.2023.179559
Finkelmeyer, Sarah; Askins, Erik J.; Eichhorn, Jonas; Ghosh, Soumik; Siegmund, Carmen; Täuscher, Eric; Dellith, Andrea; Hupfer, Maximilian; Dellith, Jan; Ritter, Uwe; Strzalka, Joseph; Glusac, Ksenija; Schacher, Felix; Presselt, Martin
Tailoring the weight of surface and intralayer edge states to control LUMO energies. - In: Advanced materials, ISSN 1521-4095, Bd. 35 (2023), 40, 2305006, S. 1-11

The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir–Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV–vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.



https://doi.org/10.1002/adma.202305006
Esmaeilzadeh Kiabani, Negin; Kazemi, Reza; Hadipour, Abed L.; Khomami, Sanaz; Kalloch, Benjamin; Hlawitschka, Mario
Targeting the insula with transcranial direct current stimulation: a simulation study. - In: Psychiatry research, ISSN 1872-7506, Bd. 335 (2023), 111718

Insula is considered an important region of the brain in the generation and maintenance of a wide range of psychiatric symptoms, possibly due to being key in fundamental functions such as interoception and cognition in general. Investigating the possibility of targeting this area using non-invasive brain stimulation techniques can open new possibilities to probe the normal and abnormal functioning of the brain and potentially new treatment protocols to alleviate symptoms of different psychiatric disorders. In the current study, COMETS2, a MATLAB based toolbox was used to simulate the magnitude of the current density and electric field in the brain caused by different transcranial direct current stimulation (tDCS) protocols to find an optimum montage to target the insula and its 6 subregions for three different current intensities, namely 2, 3, and 4 mA. Frontal and occipital regions were found to be optimal candidate regions. The results of the current study showed that it is viable to reach the insula and its individual subregions using tDCS.



https://doi.org/10.1016/j.pscychresns.2023.111718
Yu, Yan; He, Guping; Zhu, Ximiao; Yu, Jiahai; Shi, Yiwen; Lei, Yong; Sun, Fengqiang
A flexible humidity sensor constructed by ordered-pore-array of slightly reduced graphene oxide with much enhanced sensing response. - In: Surfaces and Interfaces, ISSN 2468-0230, Bd. 41 (2023), 103204

Reduced graphene oxide (rGO) flexible film humidity sensor has received increasing attention, but the low sensing response caused by lack of available hydrophilic functional groups is still a limitation. Herein, a slightly reduced graphene oxide (SrGO) ordered-pore-array, fabricated via a monolayer colloid crystal template method, was introduced as a resistive humidity sensor. It was obtained based on adsorption between the GO sheets and the template microspheres, in-situ slight reduction of the GO shells and the removal of template. The reduction way allows the functional groups of GO to be retained as much as possible, and the unique structures (e.g., spherical double surfaces and small through-holes on pore-walls) facilitate the substantial exposure of functional groups, the penetration of water molecules and the utilization of buried functional groups. The available functional groups are thereby efficiently increased, giving the sensor an unprecedented high sensing response, more than 2600 times the maximum response of existing rGO sensors. The sensor also demonstrated excellent practical characteristics, and by detecting a single exhale, it could be employed in quick and quantitative evaluation of human activities and health. This strategy paves a facile and promising route to improve the sensing response and application of graphene-based humidity sensors or gas sensors.



https://doi.org/10.1016/j.surfin.2023.103204
Diegel, Christian; Mattulat, Thorsten; Schricker, Klaus; Schmidt, Leander; Seefeld, Thomas; Bergmann, Jean Pierre; Woizeschke, Peer
Interaction between local shielding gas supply and laser spot size on spatter formation in laser beam welding of AISI 304. - In: Applied Sciences, ISSN 2076-3417, Bd. 13 (2023), 18, 10507, S. 1-25

Background. Spatter formation at melt pool swellings at the keyhole rear wall is a major issue for laser deep penetration welding at speeds beyond 8 m/min. A gas nozzle directed towards the keyhole, that supplies shielding gas locally, is advantageous in reducing spatter formation due to its simple utilization. However, the relationship between local gas flow, laser spot size, and the resulting effects on spatter formation at high welding speeds up to 16 m/min are not yet fully understood. Methods. The high-alloy steel AISI 304 (1.4301/X5CrNi18-10) was welded with laser spot sizes of 300 μm and 600 μm while using a specially designed gas nozzle directed to the keyhole. Constant welding depth was ensured by Optical Coherence Tomography (OCT). Spatter formation was evaluated by precision weighing of samples. Subsequent processing of high-speed images was used to evaluate spatter quantity, size, and velocity. The keyhole oscillation was determined by Fast Fourier Transform (FFT) analysis. Tracking the formation of melt pool swellings at the keyhole rear wall provided information on the upward melt flow velocity. Results. The local gas flow enabled a significant reduction in the number of spatters and loss of mass for both laser spot sizes and indicated an effect on surface tension by shielding the processing zone from the ambient atmosphere. The laser spot size affected the upward melt flow velocity and spatter velocity.



https://doi.org/10.3390/app131810507