Dr.-Ing. Stephan Werner

Acting Head of Electronic Media Technology Group

Phone: 03677 69-1653 Fax: 03677 69-1255 Helmholtz Building, Room H 3520 stephan.werner@tu-ilmenau.de

LinkedIn,ResearchGate,Google Scholar

Bibliography

Anzahl der Treffer: 52
Erstellt: Mon, 26 Sep 2022 23:12:20 +0200 in 0.0404 sec


Döring, Nicola; Conde, Melisa; Brandenburg, Karlheinz; Broll, Wolfgang; Groß, Horst-Michael; Werner, Stephan; Raake, Alexander;
Can communication technologies reduce loneliness and social isolation in older people? : a scoping review of reviews. - In: International journal of environmental research and public health, ISSN 1660-4601, Bd. 19 (2022), 18, 11310, S. 1-20

Background: Loneliness and social isolation in older age are considered major public health concerns and research on technology-based solutions is growing rapidly. This scoping review of reviews aims to summarize the communication technologies (CTs) (review question RQ1), theoretical frameworks (RQ2), study designs (RQ3), and positive effects of technology use (RQ4) present in the research field. Methods: A comprehensive multi-disciplinary, multi-database literature search was conducted. Identified reviews were analyzed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. A total of N = 28 research reviews that cover 248 primary studies spanning 50 years were included. Results: The majority of the included reviews addressed general internet and computer use (82% each) (RQ1). Of the 28 reviews, only one (4%) worked with a theoretical framework (RQ2) and 26 (93%) covered primary studies with quantitative-experimental designs (RQ3). The positive effects of technology use were shown in 55% of the outcome measures for loneliness and 44% of the outcome measures for social isolation (RQ4). Conclusion: While research reviews show that CTs can reduce loneliness and social isolation in older people, causal evidence is limited and insights on innovative technologies such as augmented reality systems are scarce.



https://doi.org/10.3390/ijerph191811310
Döring, Nicola; Mikhailova, Veronika; Brandenburg, Karlheinz; Broll, Wolfgang; Groß, Horst-Michael; Werner, Stephan; Raake, Alexander;
Saying "Hi" to grandma in nine different ways : established and innovative communication media in the grandparent-grandchild relationship. - In: Technology, Mind, and Behavior, ISSN 2689-0208, (2021), insges. 1 S.

https://tmb.apaopen.org/pub/8je5p43m/release/1?readingCollection=b5d405be
Werner, Stephan; Klein, Florian; Neidhardt, Annika; Sloma, Ulrike; Schneiderwind, Christian; Brandenburg, Karlheinz;
Creation of auditory augmented reality using a position-dynamic binaural synthesis system - technical components, psychoacoustic needs, and perceptual evaluation. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 3, 1150, insges. 20 S.

For a spatial audio reproduction in the context of augmented reality, a position-dynamic binaural synthesis system can be used to synthesize the ear signals for a moving listener. The goal is the fusion of the auditory perception of the virtual audio objects with the real listening environment. Such a system has several components, each of which help to enable a plausible auditory simulation. For each possible position of the listener in the room, a set of binaural room impulse responses (BRIRs) congruent with the expected auditory environment is required to avoid room divergence effects. Adequate and efficient approaches are methods to synthesize new BRIRs using very few measurements of the listening room. The required spatial resolution of the BRIR positions can be estimated by spatial auditory perception thresholds. Retrieving and processing the tracking data of the listener’s head-pose and position as well as convolving BRIRs with an audio signal needs to be done in real-time. This contribution presents work done by the authors including several technical components of such a system in detail. It shows how the single components are affected by psychoacoustics. Furthermore, the paper also discusses the perceptive effect by means of listening tests demonstrating the appropriateness of the approaches.



https://doi.org/10.3390/app11031150
Brandenburg, Karlheinz; Klein, Florian; Neidhardt, Annika; Sloma, Ulrike; Werner, Stephan;
Creating auditory illusions with binaural technology. - In: The technology of binaural understanding, (2020), S. 623-663

It is pointed out that beyond reproducing the physically correct sound pressure at the eardrums, more effects play a significant role in the quality of the auditory illusion. In some cases, these can dominate perception and even overcome physical deviations. Perceptual effects like the room-divergence effect, additional visual influences, personalization, pose and position tracking as well as adaptation processes are discussed. These effects are described individually, and the interconnections between them are highlighted. With the results from experiments performed by the authors, the perceptual effects can be quantified. Furthermore, concepts are proposed to optimize reproduction systems with regard to those effects. One example could be a system that adapts to varying listening situations as well as individual listening habits, experience and preference.



Werner, Stephan; Klein, Florian; Müller, Clemens;
Evaluation of spatial audio quality of the synthesis of binaural room impulse responses for new object positions. - In: 147th Audio Engineering Society Convention 2019, (2020), S. 972-981

The aim of auditory augmented reality is to create an auditory illusion combining virtual audio objects and scenarios with the perceived real acoustic surrounding. A suitable system like position-dynamic binaural synthesis is needed to minimize perceptual conflicts with the perceived real world. The needed binaural room impulse responses (BRIRs) have to fit the acoustics of the listening room. One approach to minimize the large number of BRIRs for all source-receiver relations is the synthesis of BRIRs using only one measurement in the listening room. The focus of the paper is the evaluation of the spatial audio quality. In most conditions differences in direct-to-reverberant-energy ratio between a reference and the synthesis is below the just noticeable difference. Furthermore, small differences are found for perceived overall difference, distance, and direction perception. Perceived externalization is comparable to the usage of measured BRIRs. Challenges are detected to synthesize more further away sources from a source position that is more close to the listening positions.



Sloma, Ulrike; Klein, Florian; Werner, Stephan; Pappachan Kannookadan, Tyson;
Synthesis of binaural room impulse responses for different listening positions considering the source directivity. - In: 147th Audio Engineering Society Convention 2019, (2020), S. 377-385

Brandenburg, Karlheinz; Fiedler, Bernhard; Fischer, Georg; Klein, Florian; Neidhardt, Annika; Schneiderwind, Christian; Sloma, Ulrike; Stirnat, Claudia; Werner, Stephan;
Perceptual aspects in spatial audio processing. - In: Proceedings of the 23rd International Congress on Acoustics, (2019), S. 3354-3360

Spatial audio processing includes recording, modification and rendering of multichannel audio. In all these fields there is the choice of either a physical representation or of perceptual approaches trying to achieve a target perceived audio quality. Classical microphone techniques on one hand and wave field synthesis, higher order ambisonics or certain methods of binaural rendering for headphone reproduction on the other hand target a good physical representation of sound. As it is known today, especially in the case of sound reproduction a faithful physical recreation of the sound wave forms ("correct signal at the ear drums") is neither necessary nor does it allow a fully authentic or even plausible reproduction of sound. 20 years ago, MPEG-4 standardized different modes for perception based versus physics based reproduction (called "Perceptual approach to modify natural source" and "Acoustic properties for physical based audio rendering"). In spatial rendering today, more and more the perceptual approach is used in state of the art systems. We give some examples of such rendering. The same distinction of physics based versus psychoacoustics (including cognitive effects) based rendering is used today for room simulation or artificial reverb systems. Perceptual aspects are at the heart of audio signal processing today.



https://edocs.tib.eu/files/e01mr19/1677542403.pdf
Werner, Stephan; Klein, Florian; Götz, Georg;
Investigation on spatial auditory perception using non-uniform spatial distribution of binaural room impulse responses. - In: Audio for virtual, augmented and mixed realities, (2019), S. 137-144

For spatial audio reproduction in the context of virtual and augmented reality, a position-dynamic binaural synthesis can be used to reproduce the ear signals for a moving listener. A set of binaural room impulse responses (BRIRs) is required for each possible position of the listener in the room. The required spatial resolution of the BRIR positions can be estimated by spatial auditory perception thresholds. If the resolution is too low, jumps in perception of direction and distance and coloration effects occur. This contribution presents an evaluation of spatial audio quality using different spatial resolutions of the position of the used BRIRs. The evaluation is performed with a moving listener. The test persons evaluate any abnormalities in the spatial audio quality. The result is a comparison of the quality and the spatial resolution of the various conditions used.



https://doi.org/10.22032/dbt.39967
Chilian, Anja; Gadyuchko, Maria; Kátai, András; Klein, Florian; Sattel, Thomas; Skuk, Verena G.; Werner, Stephan;
Innovative methods and technologies for spatial listening and speech intelligibility using hearing implants. - In: Adaptive processes in hearing, (2018), S. 343-350